Skip to main content
Log in

p-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices

Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript


In large-area organic light-emitting diodes (OLEDs), spatially inhomogeneous luminance at high power due to inhomogeneous current flow and electrothermal feedback can be observed. To describe these self-heating effects in organic semiconductors, we present a stationary thermistor model based on the heat equation for the temperature coupled to a p-Laplace-type equation for the electrostatic potential with mixed boundary conditions. The p-Laplacian describes the non-Ohmic electrical behavior of the organic material. Moreover, an Arrhenius-like temperature dependency of the electrical conductivity is considered. We introduce a finite-volume scheme for the system and discuss its relation to recent network models for OLEDs. In two spatial dimensions, we derive a priori estimates for the temperature and the electrostatic potential and prove the existence of a weak solution by Schauder’s fixed-point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. Bergemann K.J., Krasny R., Forrest S.R.: Thermal properties of organic light-emitting diodes. Organ. Electron. 13(9), 1565–1568 (2012)

    Article  Google Scholar 

  2. Bourbaki, N.: Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d’une mesure, Espaces L p, Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1175, Hermann, Paris (1965)

  3. Bradji A., Herbin R.: Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods. IMA J. Numer. Anal. 28(3), 469–495 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cimatti G.: Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions. Quart. Appl. Math 47(1), 117–121 (1989)

    MATH  MathSciNet  Google Scholar 

  5. Cimatti G.: A remark on the thermistor problem with rapidly growing conductivity. Appl. Anal. 80(1-2), 133–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diening L., Harjulehto P., Hästö P., Růžička M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

    Google Scholar 

  7. Diening L., Nägele P., Růžička M.: Monotone operator theory for unsteady problems in variable exponent spaces. Complex Var. Elliptic Equ. 57(11), 1209–1231 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eleuteri M.: Hölder continuity results for a class of functionals with non standard growth. Artic. Ric. Mat. 7(8), 129–157 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis, Vol. VII, North-Holland, Amsterdam, pp. 713–1020 (2000)

  10. Fiaschi A., Knees D., Reichelt S.: Global higher integrability of minimizers of variational problems with mixed boundary conditions. J. Math. Anal. Appl. 401(1), 269–288 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fischer A., Koprucki T., Gärtner K., Tietze M.L., Brückner J., Lüssem B., Leo K., Glitzky A., Scholz R.: Feel the heat: nonlinear electrothermal feedback in organic LEDs. Adv. Funct. Mater. 24(22), 3366–3366 (2014)

    Article  Google Scholar 

  12. Fischer A., Pahner P., Lüssem B., Leo K., Scholz R., Koprucki T., Fuhrmann J., Gärtner K., Glitzky A.: Self-heating effects in organic semiconductor crossbar structures with small active area. Org. Electron. 13(11), 2461–2468 (2012)

    Article  Google Scholar 

  13. Fischer A., Pahner P., Lüssem B., Leo K., Scholz R., Koprucki T., Gärtner K., Glitzky A.: Self-heating, bistability, and thermal switching in organic semiconductors. Phys. Rev. Lett. 110, 126601 (2013)

    Article  Google Scholar 

  14. Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38 (1974)

  15. Gröger K.: A W 1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283(4), 679–687 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Harjulehto P., Hästö P., Lê Út. V., Nuortio M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72(12), 4551–4574 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Keskin A.Ü.: A simple analog behavioural model for NTC thermistors including selfheating effect. Sens. Actuat. A Phys. 118(2), 244–247 (2005)

    Article  Google Scholar 

  18. Kohári, Z., Pohl, L.: How thermal environment affects OLEDs’ operational characteristics. 28 th IEEE SEMI-THERM Symposium, p. 331 (2012)

  19. Lindqvist, P.: Notes on the p-Laplace equation, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 102, University of Jyväskylä, Jyväskylä (2006)

  20. Mitrinović, D.S.: Analytic inequalities. In cooperation with P. M. Vasić. Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer, New York (1970)

  21. Park J., Lee J., Noh Y.: Optical and thermal properties of large-area OLED lightings with metallic grids. Org. Electron. 13, 184–194 (2012)

    Article  Google Scholar 

  22. Pohl, L., Kollar, E.: Extension of the sunred algorithm for electrothermal simulation and its application in failure analysis of large area (organic) semiconductor devices. THERMINIC 17th Workshop on Thermal Investigation of ICs and Systems, Sept. 2011, Paris, 2011, pp. 1–6 (2011)

  23. Schöll E.: Nonequilibrium Phase Transitions in Semiconductors: Self-Organization Induced by Generation and Recombination Processes. Springer Series in Synergetics. Springer, Berlin (1987)

    Book  Google Scholar 

  24. Shaw M.P., Mitin V.V., Schöll E., Grubin H.L.: The Physics of Instabilities in Solid State Electron Devices. Plenum Press, New York (1992)

    Book  Google Scholar 

  25. Slawinski M., Bertram D., Heuken M., Kalisch H., Vescan A.: Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation. Org. Electron. 12(8), 1399–1405 (2011)

    Article  Google Scholar 

  26. Slawinski M., Weingarten M., Heuken M., Vescan A., Kalisch H.: Investigation of large-area OLED devices with various grid geometries. Org. Electron. 14(10), 2387–2391 (2013)

    Article  Google Scholar 

  27. van Mensfoort S.L.M., Coehoorn R.: Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys. Rev. B 78, 085207 (2008)

    Article  Google Scholar 

  28. Xie Hong., Allegretto W.: \({C^{\alpha}({\overline{\Omega}})}\) solutions of a class of nonlinear degenerate elliptic systems arising in the thermistor problem. SIAM J. Math. Anal. 22(6), 1491–1499 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yang L., Wei B., Zhang J.: Transient thermal characterization of organic light-emitting diodes. Semicond. Sci. Technol. 27(10), 105011 (2012)

    Article  Google Scholar 

  30. Zeidler, E.: Nonlinear functional analysis and its applications. Nonlinear Monotone Operators (Translated from the German by the author and Leo F. Boron), II/B, Springer, New York (1990)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Matthias Liero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liero, M., Koprucki, T., Fischer, A. et al. p-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices. Z. Angew. Math. Phys. 66, 2957–2977 (2015).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Mathematics Subject Classification