Advertisement

Zeitschrift für angewandte Mathematik und Physik

, Volume 66, Issue 5, pp 2173–2196 | Cite as

Spectrum of a diffusion operator with coefficient changing sign over a small inclusion

  • Lucas ChesnelEmail author
  • Xavier Claeys
  • Sergei A. Nazarov
Article

Abstract

We study a spectral problem \({(\mathscr{P}^{\delta})}\) for a diffusion-like equation in a 3D domain \({\Omega }\). The main originality lies in the presence of a parameter \({\sigma^{\delta}}\), whose sign changes on \({\Omega }\), in the principal part of the operator we consider. More precisely, \({\sigma^{\delta}}\) is positive on \({\Omega }\) except in a small inclusion of size \({\delta > 0}\). Because of the sign change of \({\sigma^{\delta}}\), for all \({\delta > 0}\), the spectrum of \({(\mathscr{P}^{\delta})}\) consists of two sequences converging to \({\pm\infty}\). However, at the limit \({\delta=0}\), the small inclusion vanishes so that there should only remain positive spectrum for \({(\mathscr{P}^{\delta})}\). What happens to the negative spectrum? In this paper, we prove that the positive spectrum of \({(\mathscr{P}^{\delta})}\) tends to the spectrum of the problem without the small inclusion. On the other hand, we establish that each negative eigenvalue of \({(\mathscr{P}^{\delta})}\) behaves like \({\delta^{-2} \mu}\) for some constant \({\mu < 0}\). We also show that the eigenfunctions associated with the negative eigenvalues are localized around the small inclusion. We end the article providing 2D numerical experiments illustrating these results.

Keywords

Negative materials Small inclusion Plasmonics Metamaterial Sign-changing coefficients Eigenvalues Asymptotics Singular perturbation 

Mathematics Subject Classification

35H99 35P20 35P15 35Q60 65N25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anantha Ramakrishna S.: Physics of negative refractive index materials. Rep. Prog. Phys. 68(2), 449–521 (2005)CrossRefGoogle Scholar
  2. 2.
    Babuska, I., Osborn, J.: Eigenvalue problems. In: Finite Element Methods (Part 1), volume 2 of Handbook of Numerical Analysis, pp. 641–787. Elsevier, Amsterdam (1991)Google Scholar
  3. 3.
    Barnes W.L., Dereux A., Ebbesen T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)CrossRefGoogle Scholar
  4. 4.
    Birman, M.S., Solomjak, M.Z.: Spectral theory of selfadjoint operators in Hilbert space. Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987)Google Scholar
  5. 5.
    Bonnet-Ben Dhia A.-S., Chesnel L., Ciarlet P. Jr: \({T}\)-coercivity for scalar interface problems between dielectrics and metamaterials. Math. Mod. Num. Anal. 46, 1363–1387 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonnet-Ben Dhia, A.-S., Ciarlet Jr., P., Zwölf, C.M.: Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math, 234:1912–1919, 2010. Corrigendum J. Comput. Appl. Math., 234:2616, 2010Google Scholar
  7. 7.
    Bonnet-Ben Dhia A.-S., Ramdani K.: A non elliptic spectral problem related to the analysis of superconducting micro-strip lines. Math. Mod. Num. Anal. 36(3), 461–487 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bonnetier, E., Triki, F.: On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D. Arch. Ration. Mech. Anal., pp. 1–27, (2013)Google Scholar
  9. 9.
    Cainzos J., Pérez E., Vilasánchez M.: Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses. Indiana Univ. Math. J. 56(4), 1939–1987 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cardone G., Durante T., Nazarov S.A.: The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends. SIAM J. Math. Anal. 42(6), 2581–2609 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Charbonneau R., Lahoud N., Mattiussi G., Berini P.: Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt. Express. 13(3), 977–984 (2005)CrossRefGoogle Scholar
  12. 12.
    Chesnel L., Ciarlet P. Jr: \({\texttt{T}}\)-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numer. Math. 124(1), 1–29 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chesnel L., Claeys X., Nazarov S.A.: A curious instability phenomenon for a rounded corner in presence of a negative material. Asymp. Anal. 88(1), 43–74 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Costabel M., Stephan E.: A direct boundary integral method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gohberg I.C., Kreĭn M.G.: The basic propositions on defect numbers, root numbers and indices of linear operators. Am. Math. Soc. Transl., Ser. 2 13, 185–264 (1960)Google Scholar
  16. 16.
    Gramotnev D.K., Bozhevolnyi S.I.: Plasmonics beyond the diffraction limit. Nat. Photon 4(2), 83–91 (2010)CrossRefGoogle Scholar
  17. 17.
    Grieser, D.: The plasmonic eigenvalue problem. Rev. Math. Phys. 26(3), 1450005, 26, 2014Google Scholar
  18. 18.
    Helsing J., Perfekt K.-M.: On the polarizability and capacitance of the cube. Appl. Comput. Harmon. Anal. 34(3), 445–468 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kamotskii I.V., Nazarov S.A.: On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain. J. Math. Sci. 101(2), 2941–2974 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin, (1995). Reprint of the 1980 editionGoogle Scholar
  21. 21.
    Khavinson D., Putinar M., Shapiro H.S.: Poincaré’s variational problem in potential theory. Arch. Ration. Mech. Anal. 185(1), 143–184 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kondratiev V.A.: Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16, 227–313 (1967)Google Scholar
  23. 23.
    Lions J.-L., Magenes E.: Problèmes aux limites non homogènes et applications. Dunod, (1968)Google Scholar
  24. 24.
    Lobo M., Pérez E.: Local problems for vibrating systems with concentrated masses: a review. C. R. Méc. Acad. Sci. Paris 331(4), 303–317 (2003)zbMATHGoogle Scholar
  25. 25.
    Maier S.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)Google Scholar
  26. 26.
    Maz’ya V.G., Nazarov S.A.: Singularities of solutions of the Neumann problem at a conic point. Sibirsk. Mat. Zh. 30(3), 52–63,218 (1989)MathSciNetGoogle Scholar
  27. 27.
    Maz’ya, V.G., Nazarov, S.A., Plamenevskiĭ, B.A.: Singularities of solutions of the Dirichlet problem in the exterior of a thin cone. Mat. Sb. (N.S.). 122(164)(4), 435–457 (1983)Google Scholar
  28. 28.
    Maz’ya V.G., Nazarov S.A., Plamenevskiĭ B.A.: Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings. Izv. Akad. Nauk SSSR Ser. Mat. 48(2), 347–371 (1984)MathSciNetGoogle Scholar
  29. 29.
    Maz’ya, V.G., Nazarov, S.A., Plamenevskiĭ, B.A.: Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1, 2. Birkhäuser, Basel, (2000). Translated from the original German 1991 editionGoogle Scholar
  30. 30.
    Nazarov S.A.: Interaction of concentrated masses in a harmonically oscillating spatial body with neumann boundary conditions. Math. Model. Numer. Anal. 27(6), 777–799 (1993)zbMATHGoogle Scholar
  31. 31.
    Nazarov, S.A.: Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions. In Proceedings of the St. Petersburg Mathematical Society, Vol. V, volume 193 of Am. Math. Soc. Transl. Ser. 2, pp. 77–125, Providence (1999)Google Scholar
  32. 32.
    Nazarov S.A.: Asymptotics of negative eigenvalues of the Dirichlet problem with the density changing sign. J. Math. Sci. (NY) 163(2), 151–175 (2009)CrossRefzbMATHGoogle Scholar
  33. 33.
    Nazarov S.A.: Localization near the corner point of the first eigenfunction of the Dirichlet problem in a domain with thin edging. Sibirsk. Mat. Zh. 52(2), 350–370 (2011)MathSciNetGoogle Scholar
  34. 34.
    Nazarov S.A., Pankratova I.L., Piatnitski A.L.: Homogenization of the spectral problem for periodic elliptic operators with sign-changing density function. Arch. Ration. Mech. Anal. 200(3), 747–788 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Nazarov S.A., Piatnitski A.L.: Homogenization of the spectral Dirichlet problem for a system of differential equations with rapidly oscillating coefficients and changing sign density. J. Math. Sci. (NY) 169(2), 212–248 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Nazarov, S.A., Plamenevskiĭ, B.A.: Elliptic problems in domains with piecewise smooth boundaries, volume 13 of Expositions in Mathematics. De Gruyter, Berlin (1994)Google Scholar
  37. 37.
    Nicaise S., Venel J.: A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients. J. Comput. Appl. Math. 235(14), 4272–4282 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Oleinik O.A., Sanchez-Hubert J., Yosifian G.A.: On vibrations of a membrane with concentrated masses. Bull. Sci. Math. SÃl’r. 2 115, 1–27 (1991)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Ordal M.A., Long L.L., Bell R.J., Bell S.E., Bell R.R., Alexander R.W., Ward C.A.: Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Appl. Opt. 22(7), 1099–1119 (1983)CrossRefGoogle Scholar
  40. 40.
    Peetre J.: Another approach to elliptic boundary problems. Commun. Pure Appl. Math. 14, 711–731 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Perfekt K.-M., Putinar M.: Spectral bounds for the Neumann-Poincaré operator on planar domains with corners. J. Anal. Math. 124, 39–57 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Poincaré H.: La méthode de Neumann et le problème de Dirichlet. Acta Math. 20(1), 59–142 (1897)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Ramdani, K.: Lignes supraconductrices: analyse mathématique et numérique. PhD thesis, Université Paris 6, France (1999)Google Scholar
  44. 44.
    Roĭtberg Ya.A., Šeftel’ Z.G.: General boundary-value problems for elliptic equations with discontinuous coefficients. Dokl. Akad. Nauk SSSR. 148, 1034–1037 (1963)MathSciNetGoogle Scholar
  45. 45.
    Sanchez-Palencia, E.: Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses. In: Trends and applications of Pure Mathematics to Mechanics, pp. 346–368. Springer, Berlin (1984)Google Scholar
  46. 46.
    Tartar L.: Sur un lemme d’équivalence utilisé en analyse numérique. Calcolo 24(2), 129–140 (1987)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Vishik M.I., Lyusternik L.A.: Regular degeneration and boundary layer for linear differential equations with small parameter. Am. Math. Soc. Transl. (2) 20, 239–364 (1962)zbMATHGoogle Scholar
  48. 48.
    Zayats A.V., Smolyaninov I.I., A.A., Maradudin: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Lucas Chesnel
    • 1
    Email author
  • Xavier Claeys
    • 2
  • Sergei A. Nazarov
    • 3
    • 4
    • 5
  1. 1.Centre de Mathématiques AppliquéesBureau 2029, École PolytechniquePalaiseau CedexFrance
  2. 2.Laboratory Jacques Louis LionsUniversity Pierre et Marie CurieParisFrance
  3. 3.Faculty of Mathematics and MechanicsSt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Laboratory for mechanics of new nanomaterialsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  5. 5.Laboratory of mathematical methods in mechanics of materialsInstitute of Problems of Mechanical EngineeringSt. PetersburgRussia

Personalised recommendations