Skip to main content
Log in

A two-temperature model for thermoelectric effects and its consequences in practical applications

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In recent papers, a two-temperature model for thermoelectric effects has been introduced. That model is able to account for the difference in phonon and electron temperature and may open new lines of research in thermoelectricity. Here, we perform a scrutiny of that model in order to check its physical standing. We further provide some useful characteristic numbers which may be used in practical applications in order to reduce to a simpler level the analysis. The consequences of that model on the usual Kelvin relations are pointed out, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boukai A.I., Bunimovich Y., Tahir-Kheli J., Yu J.-K., Goddard III W.A., Heath J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Article  Google Scholar 

  2. Joshi G., Lee H., Lan Y., Wang X., Zhu G., Wang D., Gould R.W., Cuff D.C., Tang M.Y., Dresselhaus M.S., Chen G., Ren Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670–4674 (2008)

    Article  Google Scholar 

  3. Tzou D.Y.: Macro to Micro-scale Heat Transfer. The Lagging Behaviour. Taylor and Francis, New York (1997)

    Google Scholar 

  4. Lebon G., Jou D., Casas-Vázquez J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)

    Book  Google Scholar 

  5. Jou D., Casas-Vázquez J., Lebon G.: Extended Irreversible Thermodynamics, 4th edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Volz, S. (ed.): Thermal Nanosystems and Nanomaterials. Topics in Applied Physics. Springer, Berlin (2010)

  7. Wang, X., Wang, Z. (eds.): Nanoscale Thermoelectrics. Springer, Berlin (2014)

  8. Cimmelli V.A., Jou D., Ruggeri T., Ván P.: Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756–1807 (2014)

    Article  MathSciNet  Google Scholar 

  9. Kovács R., Ván P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)

    Article  Google Scholar 

  10. Jou D., Sellitto A., Cimmelli V.A.: Phonon temperature and electron temperature in thermoelectric coupling. J. Non-Equilib. Thermodyn. 38, 335–361 (2013)

    Google Scholar 

  11. Sellitto A., Cimmelli V.A., Jou D.: Influence of electron and phonon temperature on the efficiency of thermoelectric conversion. Int. J. Heat Mass Transf. 80, 344–352 (2015)

    Article  Google Scholar 

  12. Chen G.: Nanoscale Energy Transport and Conversion—A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford (2005)

    Google Scholar 

  13. Sellitto A., Cimmelli V.A., Jou D.: Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires. Int. J. Heat Mass Transf. 57, 109–116 (2013)

    Article  Google Scholar 

  14. Stojanovic N., Maithripala D.H.S., Berg J.M., Holtz M.: Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann–Franz law. Phys. Rev. B 82, 075418 (2010)

    Article  Google Scholar 

  15. Berciaud S., Han M.Y., Mak K.F., Brus L.E., Kim P., Heinz T.F.: Electron and optical phonon temperatures in electrically biased graphene. Phys. Rev. Lett. 104, 227401 (2010)

    Article  Google Scholar 

  16. Schreier M., Kamra A., Weiler M., Xiao J., Bauer G.E.W., Gross R., Goennenwein S.T.B.: Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Phys. Rev. B 88, 094410 (2013)

    Article  Google Scholar 

  17. Wang M., Cao B.-Y., Guo Z.-Y.: General heat conduction equations based on the thermomass theory. Front. Heat Mass Transf. 1, 013004 (2010)

    Google Scholar 

  18. Dong Y., Cao B.-Y., Guo Z.-Y.: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (2011)

    Article  Google Scholar 

  19. Wang M., Yang N., Guo Z.-Y.: Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011)

    Article  Google Scholar 

  20. Ashcroft N.W., Mermin N.D.: Solid State Physics. Saunder College, New York (1976)

    Google Scholar 

  21. Liu I.-S.: Method of Lagrange multipliers for exploitation of entropy principle. Arch. Ration. Mech. Anal. 46, 131–138 (1972)

    MATH  Google Scholar 

  22. Cimmelli V.A., Sellitto A., Triani V.: Method of Lagrange multipliers for exploitation of entropy principle. J. Math. Phys. 50, 053101 (2009)

    Article  MathSciNet  Google Scholar 

  23. Verhás J.: Thermodynamics and Rheology. Kluwer Academic Publisher, Dordrecht (1997)

    MATH  Google Scholar 

  24. Smith G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MATH  Google Scholar 

  25. De Groot S.R., Mazur P.: Nonequilibrium Thermodynamics. North-Holland Publishing Company, Amsterdam (1962)

    Google Scholar 

  26. Gyarmati I.: Nonequilibrium Thermodynamics. Springer, Berlin (1970)

    Google Scholar 

  27. Onsager L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

  28. Onsager L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sellitto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellitto, A. A two-temperature model for thermoelectric effects and its consequences in practical applications. Z. Angew. Math. Phys. 66, 3433–3445 (2015). https://doi.org/10.1007/s00033-015-0553-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0553-7

Mathematics Subject Classification

Keywords

Navigation