Zeitschrift für angewandte Mathematik und Physik

, Volume 66, Issue 5, pp 2759–2785 | Cite as

One-dimensional quasistatic model of biodegradable elastic curved rods

Article

Abstract

In this paper, we derive and analyze a one-dimensional model of biodegradable elastic curved rods. The model is given for displacement and degradation as unknown functions and is nonlinear. It is obtained from the three-dimensional equations of the biodegradable elastic rod-like bodies using formal asymptotic expansion techniques with respect to the small thickness of the rod. Existence and uniqueness of the solution of the one-dimensional model are proved. Some qualitative properties of the model are also obtained from the numerical approximation of the model.

Mathematics Subject Classification

74K10 74E99 

Keywords

Elasticity Degradation Curved rods One-dimensional model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreucci, D.: Lecture Notes on Free Boundary Problems for Parabolic Equations. Doctoral School of Cisterna (2011)Google Scholar
  2. 2.
    Chen Y., Li Q.: Mathematical modeling of polymer biodegradation and erosion. Mater. Sci. Forum 654–656, 2071–2074 (2010)CrossRefGoogle Scholar
  3. 3.
    Dautray R., Lions J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Evolution Problems. I. Springer, Berlin (1992)MATHGoogle Scholar
  4. 4.
    Evans L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)MATHGoogle Scholar
  5. 5.
    Göpferich A.: Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996)CrossRefGoogle Scholar
  6. 6.
    Jamal R., Sanchez-Palencia É.: Théorie asymptotique des tiges courbes anisotropes. C. R. Acad. Sci. Paris Sér. I Math. 322, 1099–1106 (1996)MathSciNetMATHGoogle Scholar
  7. 7.
    Jurak M., Tambača J.: Derivation and justification of a curved rod model. Math. Models Methods Appl. Sci. 9, 991–1014 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jurak M., Tambača J.: Linear curved rod model: General curve. Math. Models Methods Appl. Sci. 11, 1237–1252 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Milliken G.A., Akdeniz F.: A theorem on the difference of the generalized inverses of two nonnegative matrices. Commun. Stat. Theory Methods 6, 73–79 (1977)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Moore J.E. Jr, Soares J.S., Rajagopal K.R.: Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovasc. Eng. Technol. 1, 52–65 (2010)CrossRefGoogle Scholar
  11. 11.
    Soares J.S., Zunino P.: A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks. Biomaterials 31, 3032–3042 (2010)CrossRefGoogle Scholar
  12. 12.
    Taylor M.: Partial Differential Equations I: Basic Theory. Springer, Berlin (2010)Google Scholar
  13. 13.
    Wu Z., Yin J., Wang C.: Elliptic & Parabolic Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2006)CrossRefMATHGoogle Scholar
  14. 14.
    Zunino, P., Vesentini, S., Porpora, A., Soares, J.S., Gautieri A., Redaelli, A.: Multiscale computational analysis of degradable polymers. In: Modeling of Physiological Flows. Springer, Milan, pp. 333–361 (2012)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Organization and InformaticsUniversity of ZagrebVaraždinCroatia

Personalised recommendations