Zeitschrift für angewandte Mathematik und Physik

, Volume 66, Issue 5, pp 2759–2785 | Cite as

One-dimensional quasistatic model of biodegradable elastic curved rods

  • Josip Tambača
  • Bojan Žugec


In this paper, we derive and analyze a one-dimensional model of biodegradable elastic curved rods. The model is given for displacement and degradation as unknown functions and is nonlinear. It is obtained from the three-dimensional equations of the biodegradable elastic rod-like bodies using formal asymptotic expansion techniques with respect to the small thickness of the rod. Existence and uniqueness of the solution of the one-dimensional model are proved. Some qualitative properties of the model are also obtained from the numerical approximation of the model.

Mathematics Subject Classification

74K10 74E99 


Elasticity Degradation Curved rods One-dimensional model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreucci, D.: Lecture Notes on Free Boundary Problems for Parabolic Equations. Doctoral School of Cisterna (2011)Google Scholar
  2. 2.
    Chen Y., Li Q.: Mathematical modeling of polymer biodegradation and erosion. Mater. Sci. Forum 654–656, 2071–2074 (2010)CrossRefGoogle Scholar
  3. 3.
    Dautray R., Lions J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Evolution Problems. I. Springer, Berlin (1992)zbMATHGoogle Scholar
  4. 4.
    Evans L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  5. 5.
    Göpferich A.: Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996)CrossRefGoogle Scholar
  6. 6.
    Jamal R., Sanchez-Palencia É.: Théorie asymptotique des tiges courbes anisotropes. C. R. Acad. Sci. Paris Sér. I Math. 322, 1099–1106 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Jurak M., Tambača J.: Derivation and justification of a curved rod model. Math. Models Methods Appl. Sci. 9, 991–1014 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jurak M., Tambača J.: Linear curved rod model: General curve. Math. Models Methods Appl. Sci. 11, 1237–1252 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Milliken G.A., Akdeniz F.: A theorem on the difference of the generalized inverses of two nonnegative matrices. Commun. Stat. Theory Methods 6, 73–79 (1977)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Moore J.E. Jr, Soares J.S., Rajagopal K.R.: Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovasc. Eng. Technol. 1, 52–65 (2010)CrossRefGoogle Scholar
  11. 11.
    Soares J.S., Zunino P.: A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks. Biomaterials 31, 3032–3042 (2010)CrossRefGoogle Scholar
  12. 12.
    Taylor M.: Partial Differential Equations I: Basic Theory. Springer, Berlin (2010)Google Scholar
  13. 13.
    Wu Z., Yin J., Wang C.: Elliptic & Parabolic Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zunino, P., Vesentini, S., Porpora, A., Soares, J.S., Gautieri A., Redaelli, A.: Multiscale computational analysis of degradable polymers. In: Modeling of Physiological Flows. Springer, Milan, pp. 333–361 (2012)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Organization and InformaticsUniversity of ZagrebVaraždinCroatia

Personalised recommendations