Skip to main content
Log in

Near-tip field for diffraction on square lattice by rigid constraint

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The displacement field, due to diffraction of a time harmonic lattice wave on square lattice, near the tip of a semi-infinite rigid constraint is investigated. A rigorous proof, supported by numerics, establishes that the exact solution of semi-infinite rigid constraint diffraction provides an approximation in 2 of the solution near a tip for finite rigid constraint diffraction. A closed-form expression for the displacement at lattice sites ahead of, as well as adjacent to, the rigid constraint tip is provided. A low-frequency approximation of the normalized shear force in ‘horizontal’ bonds, ahead of the semi-infinite rigid constraint, captures the classical edge diffraction singularity. It is demonstrated, with graphical illustrations, that at low frequency, the normalized shear force in ‘vertical’ bonds along the constraint approach the continuum approximation as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M.J., Fokas A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  2. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1974)

  3. Achenbach J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  4. Ang D., Knopoff L.: Diffraction of scalar elastic waves by a clamped finite strip. Proc. Natl. Acad. Sci. 51, 471 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berenger J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhat H.S., Osting B.: Diffraction on the two-dimensional square lattice by a single slit. SIAM J. Appl. Math. 70(5), 1389–1406 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanc X., Le~Bris C., Lions P.-L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164(4), 341–381 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böttcher A., Silbermann B.: Analysis of Toeplitz Operators, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Bouwkamp C.J.: Diffraction theory. Rep. Prog. Phys. 17, 35–100 (1954)

    Article  MathSciNet  Google Scholar 

  10. Braides A., Gelli M.S.: Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7, 41–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calderón A., Spitzer F., Widom H.: Inversion of Toeplitz matrices. Ill. J. Math. 3, 490–498 (1959)

    MATH  Google Scholar 

  12. Chambers, L.G.: Diffraction by a half plane. In: Proceedings of the Edinburgh Mathematical Society, vol. 10, Series 2, 92 pp. (1954)

  13. Collatz L.: The Numerical Treatment of Differential Equations, 3rd edn. Springer, Berlin (1960)

    Book  MATH  Google Scholar 

  14. Colquitt D.J., Nieves M.J., Jones I.S., Movchan A.B., Movchan N.V.: Localization for a line defect in an infinite square lattice. Proc. R. Soc. A 469(2150), 1–23 (2013)

    MathSciNet  Google Scholar 

  15. Dybin, V.B., Dzhirgalova, S.B.: Scalar discrete convolutions in spaces of sequences summed with exponential weights—part 1: one-sided invertibility. Integr. Equ. Oper. Theory, 1–26 (2014). doi:10.1007/s00020-014-2207-0

  16. Economou E.N.: Green’s Functions in Quantum Physics, 2nd edn. Springer, Berlin (1983)

    Book  Google Scholar 

  17. Epstein, P.S.: Über Die Beugung an Einem Ebenen Schirm Unter Berucksichtigung des Materialeinflusses. Dissertation, Munich, Germany (1914)

  18. Erdélyi, A. (ed.): Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

  19. Fel’d Ya.N.: Diffraction of electromagnetic waves on a semi-infinite grating. Radiotekhn. i Elektron. 3, 882–884 (1958)

    Google Scholar 

  20. Felsen L.B., Marcuvitz N.: Radiation and Scattering of Waves. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  21. Gohberg I., Feldman I.: Convolution Equations and Projection Methods for Their Solutions. Math. Monogr., vol. 41. AMS, Providence (1974)

    Google Scholar 

  22. Heins A.E., Silver S.: The edge conditions and field representation theorems in the theory of electromagnetic diffraction. Proc. Camb. Philos. Soc. 51, 149–161 (1965)

    Article  MathSciNet  Google Scholar 

  23. Hiroshima F., Sasaki I., Shirai T., Suzuki A.: Note on the spectrum of discrete Schrödinger operators. J. Math-for-Ind 4, 105–108 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Jones D.S.: A simplifying technique in the solution of a class of diffraction problems. Q. J. Math. 3, 189–196 (1952)

    Article  MATH  Google Scholar 

  25. Jones D.S.: The Theory of Electromagnetism. Macmillan, New York (1964)

    MATH  Google Scholar 

  26. Jury E.I.: Theory and Application of the Z-Transform Method. Wiley, New York (1964)

    Google Scholar 

  27. Karp S.: Diffraction by finite and infinite gratings. Phys. Rev. 86, 586 (1952)

    Google Scholar 

  28. Katsura S., Inawashiro S.: Lattice Green’s functions for the rectangular and the square lattices at arbitrary points. J. Math. Phys. 12, 1622–1630 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  29. Krein M.G.: Integral equations on a half-line with kernel depending upon the difference of the arguments. Am. Math. Soc. Transl. Ser. 2 22, 163–288 (1962)

    MATH  Google Scholar 

  30. Lamb H.: On Sommerfeld’s diffraction problem, and on reflection by a parabolic mirror. Proc. Lond. Math. Soc. 4, 190 (1907)

    Article  MathSciNet  Google Scholar 

  31. Makwana M., Craster R.V.: Localised point defect states in asymptotic models of discrete lattices. Q. J. Mech. Appl. Math. 66, 289–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Maradudin A.A.: Screw dislocations and discrete elastic theory. J. Phys. Chem. Solids 9(1), 1–20 (1958)

    Article  MathSciNet  Google Scholar 

  33. Maradudin A.A., Montroll E.W., Weiss G.H., Ipatova I.P.: Theory of Lattice Dynamics in the Harmonic Approximation, 2nd edn. Academic Press, New York (1971)

    Google Scholar 

  34. Martin P.A.: Discrete scattering theory: Green’s function for a square lattice. Wave Motion 43, 619–629 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mikhlin, S.G., Prössdorf, S.: Singular Integral Operators. Springer, Basel, Akademie-Verlag, Berlin (1986)

  36. Morse P.M., Feshbach H.: Methods of Theoretical Physics, Part II. McGraw-Hill, New York (1953)

    Google Scholar 

  37. Noble B.: Methods Based on the Wiener–Hopf Technique. Pergamon Press, London (1958)

    MATH  Google Scholar 

  38. Rice S.O.: Diffraction of a plane radio wave by a parabolic cylinder. Bell Syst. Tech. J. 33, 417–504 (1954)

    Article  MathSciNet  Google Scholar 

  39. Robin L.: Diffraction d’une onde cylindrique par un cylindre parabolique. Ann. Telecom. 19, 257–269 (1964)

    MathSciNet  MATH  Google Scholar 

  40. Shaban W., Vainberg B.: Radiation conditions for the difference Schrödinger operators. Appl. Anal. 80, 525–556 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sharma, B.L.: Diffraction of Waves on Square Lattice by Semi-Infinite Crack. SIAM J. Appl. Math. (to appear)

  42. Sharma, B.L.: Diffraction of Waves on Square Lattice by Semi-Infinite Rigid Constraint (2014, submitted)

  43. Sharma, B.L.: Near Tip Field for Diffraction on Square Lattice by Crack (2014, submitted)

  44. Sharma, B.L.: Continuum Limit of Some Discrete Sommerfeld Problems (unpublished)

  45. Singer I., Turkel E.: A perfectly matched layer for the Helmholtz equation in a semi-infinite strip. J. Comput. Phys. 201, 439–465 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Slepyan L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  47. Slepyan L.I.: Antiplane problem of a crack in a lattice. Mech. Solids 17(5), 101–114 (1982)

    MathSciNet  Google Scholar 

  48. Sommerfeld A.: Mathematische theorie der diffraction. Math. Ann. 47, 317 (1896)

    Article  MathSciNet  MATH  Google Scholar 

  49. Thau S.A., Pao Y.-H.: Diffractions of horizontal shear waves by a parabolic cylinder and dynamic stress concentrations. J. Appl. Mech. 33(4), 785–792 (1960)

    Article  Google Scholar 

  50. Wiener, N., Hopf, E.: Über eine Klasse singulärer Integralgleichungen. Sitz. Berlin Akad. Wiss. pp. 696–706 (1931)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basant Lal Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.L. Near-tip field for diffraction on square lattice by rigid constraint. Z. Angew. Math. Phys. 66, 2719–2740 (2015). https://doi.org/10.1007/s00033-015-0508-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0508-z

Mathematics Subject Classification

Keywords

Navigation