Skip to main content
Log in

On a class of reciprocal Stefan moving boundary problems

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper concerns the action of reciprocal transformations on a class of moving boundary problems of Stefan type. Thus, an established integral representation is combined with a reciprocal transformation to obtain parametric exact solution to classes of moving boundary problems which arise, in particular, in the context of the percolation of liquids through a porous medium such as soil. Importantly, the procedure is shown to extend to a wide class of moving boundary value problems which incorporate heterogeneity in the porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubenstein L.I.: The Stefan Problem, American Mathematical Society Translations Vol. 27. American Mathematical Society, Providence (1971)

    Google Scholar 

  2. Friedman A.: Variational Principles and Free Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  3. Elliot, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics Vol. 59, New York, Pitman (1982)

  4. Crank J.: Free and Moving Boundary Value Problems. Clarendon Press, Oxford (1984)

    Google Scholar 

  5. Alexides V., Solomon A.D.: Mathematical Modelling of Melting and Freezing Processes. Hemisphere Taylor and Francis, Washington (1996)

    Google Scholar 

  6. Tarzia D.A.: A bibliography on moving-free boundary wave problems for the heat diffusion equation. Stefan Problem. MAT Serie A 2, 1–297 (2000)

    Google Scholar 

  7. Calogero F., De Lillo S.: The Burgers equation on the semi-infinite and finite intervals. Nonlinearity 2, 37–43 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calogero F., De Lillo S.: Flux infiltration into soils: analytic solutions. J. Phys. A Math. Gen. 27, L137 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ablowitz M.J., De Lillo S.: Solutions of a Burgers–Stefan problem. Phys. Lett. A 271, 273–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ablowitz M.J., De Lillo S.: On a Burgers–Stefan problem. Nonlinearity 13, 471–478 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rogers C.: Application of a reciprocal transformation to a two phase Stefan problem. J. Phys. A Math. Gen. 18, L105–L109 (1985)

    Article  MATH  Google Scholar 

  12. Rogers C.: On a class of moving boundary value problems in nonlinear heat conduction. Application of a Bäcklund transformation. Int. J. Nonlinear Mech. 21, 249–256 (1986)

    Article  MATH  Google Scholar 

  13. Storm M.L.: Heat equations in simple metals. J. Appl. Phys. 22, 940–951 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rogers C., Guo B.Y.: A note on the onset of melting in a class of simple metals. Conditions on the applied boundary flux. Acta Math. Sci. 8, 425–430 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Tarzia D.A.: An inequality for the coefficient \({\sigma}\) of the free boundary \({s(t) = \sigma\sqrt{t}}\) of the Neumann problem for the two-phase Stefan problem. Quart. Appl. Math. 39, 491–497 (1981)

    MathSciNet  Google Scholar 

  16. Solomon A.D., Wilson D.G., Alexides V.: Explicit solutions to phase problems. Quart. Appl. Math. 41, 237–243 (1983)

    MathSciNet  MATH  Google Scholar 

  17. Rogers C.: Reciprocal relations in non-steady one-dimensional gasdynamics. Zeit. Ang. Math. Phys. 19, 58–63 (1968)

    Article  MATH  Google Scholar 

  18. Rogers C.: Invariant transformations in non-steady gasdynamics and magneto-gasdynamics. Zeit. Ang. Math. Phys. 20, 370–382 (1969)

    Article  MATH  Google Scholar 

  19. Kingston J.G., Rogers C.: Reciprocal Bäcklund transformations of conservation laws. Phys. Lett. 92A, 261–264 (1982)

    Article  MathSciNet  Google Scholar 

  20. Rogers C., Wong P.: On reciprocal Bäcklund transformations of inverse scattering schemes. Phys. Scripta 30, 10–14 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rogers C., Nucci M.C.: On reciprocal Bäcklund transformations and the Korteweg-de Vries hierarchy. Phys. Scripta 33, 289–292 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rogers C.: The Harry Dym equation in 2+1 dimensions: a reciprocal link with the Kadomtsev–Petviashvili equation. Phys. Lett. A 120, 15–18 (1987)

    Article  MathSciNet  Google Scholar 

  23. Rogers C., Carillo S.: On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies. Phys. Scripta 36, 865–869 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Konopelchenko, B., Rogers, C.: Bäcklund and reciprocal transformations: gauge connections. In Nonlinear Equations in Applied Science, pp. 317–362. Academic Press, New York (1992)

  25. Oevel W., Rogers C.: Gauge transformations and reciprocal links in 2+1-dimensions. Rev. Math. Phys. 5, 299–330 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schief W.K., Rogers C.: The affinsphären equation. Moutard and Bäcklund transformations. Inverse Probl. 10, 711–731 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rogers C., Huang Y.: On an integrable deformed affinsphären equation. A reciprocal gasdynamic connection. Phys. Lett. A. 376, 1446–1450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Degasperis A., Holm D.D., Hone A.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    Article  MathSciNet  Google Scholar 

  29. Rogers C., Shadwick W.F.: Bäcklund Transformations and Their Applications. Mathematics in Science and Engineering Series. Academic Press, New York (1982)

    Google Scholar 

  30. Rogers C., Schief W.K.: Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  31. Richards L.A.: Capillary conduction of liquids through porous mediums. Physics (N.Y.) 1, 318–333 (1931)

    MATH  Google Scholar 

  32. Fokas A.S., Yortsos Y.C.: On the exactly soluble equation \({S_t = [(\beta S + \gamma)^{-2}S_x]_x + \alpha(\beta S + \gamma)^{-2}S_x}\) occurring in two phase flow in porous media. Soc. Ind. Appl. Math. J. Appl. Math. 42, 318–332 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rogers C., Stallybrass M.P., Clements D.L.: On two phase filtration under gravity and with boundary infiltration: application of a Bäcklund transformation. Nonlinear Anal. Theory Methods Appl. 7, 785–799 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fokas A.S., Rogers C., Schief W.K.: Evolution of methacrylate distribution during wood saturation. A nonlinear moving boundary problem. Appl. Math. Lett. 18, 321–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Broadbridge P., Knight J.H., Rogers C.: Constant rate rainfall infiltration in a bounded profile: solutions of a nonlinear model. Soil. Sci. Soc. Am. J. 52, 1526–1533 (1988)

    Article  Google Scholar 

  36. Broadbridge P., White I.: Constant rate rainfall infiltration: a versatile nonlinear model I. Analytic solution. Water Resour. Res. 24, 145–154 (1988)

    Article  Google Scholar 

  37. Rogers C., Schief W.K.: The classical Korteweg capillarity system: geometry and invariant transformations. J. Phys. A Math. Theor. 47, 345201 (2014)

    Article  MathSciNet  Google Scholar 

  38. Keller J.B.: Melting and freezing at constant speed. Phys. Fluids 92, 2013 (1986)

    Article  Google Scholar 

  39. Briozzo A.C., Tarzia D.A.: Explicit solution of a free boundary problem for a nonlinear absorption model of mixed saturated-unsaturated flow. Adv. Water Resour. 21, 713–721 (1998)

    Article  Google Scholar 

  40. Karal F.C., Keller J.B.: Elastic wave propagation in homogeneous and inhomogeneous media. J. Acoust. Soc. Am. 31, 694–705 (1959)

    Article  MathSciNet  Google Scholar 

  41. Rogers C., Clements D.L., Moodie T.B.: Transient displacement and stress in non-homogeneous elastic shells. J. Elasticity 7, 171–184 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  42. Barclay D.W., Moodie T.B., Rogers C.: Cylindrical impact waves in homogeneous Maxwellian visco-elastic media. Acta Mech. 29, 93–117 (1978)

    Article  MATH  Google Scholar 

  43. Bergman S.: Integral Operators in the Theory of Partial Differential Equations. Springer, Berlin (1968)

    Google Scholar 

  44. Clements D.L., Atkinson C., Rogers C.: Anti-plane crack problems for an inhomogeneous elastic material. Acta Mech. 29, 199–211 (1978)

    Article  MATH  Google Scholar 

  45. Rogers C., Clements D.L.: Bergman’s integral operator method in inhomogeneous elasticity. Quart. Appl. Math. 36, 315–321 (1978)

    MathSciNet  MATH  Google Scholar 

  46. Clements D.L., Rogers C.: On the Bergman operator method and anti-plane contact problems involving an inhomogeneous half-space. Soc. Ind. Appl. Math. J. Appl. Math. 34, 764–773 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rogers C., Sawatsky R.: Heat conduction in an inhomogeneous half-space subject to a nonlinear boundary condition. Application of Bergman-type series. Int. J. Eng. Sci. 23, 415–424 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rogers C., Schief W.K.: The classical Bäcklund transformation and integrable discretisation of characteristic equations. Phys. Lett. A 232, 217–223 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. Broadbridge P.: Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous porous media. J. Math. Phys. 29, 622–627 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rogers C., Broadbridge P.: On a nonlinear moving boundary value problem with heterogeneity: application of a reciprocal transformation. Zeit. Ang. Math. Phys. 39, 122–128 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Rogers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, C. On a class of reciprocal Stefan moving boundary problems. Z. Angew. Math. Phys. 66, 2069–2079 (2015). https://doi.org/10.1007/s00033-015-0506-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0506-1

Mathematics Subject Classification

Keywords

Navigation