Skip to main content
Log in

Spectrum and stability analysis for a transmission problem in thermoelasticity with a concentrated mass

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, a transmission problem between elastic and thermoelastic material is considered. Assume that these two materials are connected by a vibrating concentrated mass. By a detailed spectral analysis, the asymptotic expressions of the eigenvalues of the system are obtained, and based on which, the Riesz basis property of the eigenvectors is deduced. It is proved that the total energy of this system cannot achieve exponential decay. However, by the frequency domain method together with some multiplier techniques, the polynomial decay of the system is showed and the optimal decay rate is estimated. Finally, some numerical simulations are given to support the results obtained in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lagnese J.E., Leugering G., Schmidt E.J.P.G.: Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures. Systems & Control: Foundations & Applications. Birkhauser, Boston (1994)

    Book  Google Scholar 

  2. Rao M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J. Sound Vib. 262(3), 457–474 (2003)

    Article  Google Scholar 

  3. Oh, K.: Theoretical and experimental study of modal interactions in metallic and lamined com-posite plates. Ph. D. Thesis. Virginia Polytechnic Institute and State University, Blacksburg (1994)

  4. Zuazua E.: Exponential decay for the semilinear wave eqaution with locally distributed damping. Commun. Part. Differ. Equ. 15(2), 205–235 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Roder L., Tebou T.: Stabilization of the wave equation with localized nonlinear damping. J. Differ. Equ. 145, 502–524 (1998)

    Article  MATH  Google Scholar 

  6. Burns J.A., Cliff E.M., Liu Z., Spies R.D.: Polynomial stability of a joint-leg-beam system with local damping. Math. Comput. Model. 46, 1236–1246 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lagnese J.E.: Boundary controllability in problems of transmission for a class of second order hyperbolics systems. ESAIM Control Optim. Cal. Var. 2, 343–357 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bae J.J.: Nonlinear transmission problem for wave equation with boundary condition of memory type. Acta Appl. Math. 110, 907–919 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bae J.J., Kim S.S.: On transmission problem for viscoelastic wave equation with a localized nonlinear dissipation. Acta Math. Sci. 33(2), 362–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fatori L.H., Antonio C.L.: Exponential decay of serially connected elastic wave. Bol. Soc. Paran. Mat. 28(1), 9–27 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Marzocchi A., Munoz Rivera J.E., Naso M.G.: Asymptotic behavior and exponential stability for a transmission problem in thermoelasticity. Math. Methods Appl. Sci. 25, 955–4980 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marzocchi A., Munoz Rivera J.E., Naso M.G.: Transmission problem in thermoelasticity with symmetry. IMA J. Appl. Math. 68, 23–46 (2002)

    Article  MathSciNet  Google Scholar 

  13. Munoz Rivera J.E., Portillo Oquendo H.: The transmission problem for thermoelastic beams. J. Thermal Stress. 24(12), 1137–1158 (2001)

    Article  MathSciNet  Google Scholar 

  14. Alves M.S., Raposo C.A., Munoz Rivera J.E., Sepulveda M., Villagran O.V.: Uniform stabilization for the transmission problem of the Timoshenko system with memory. J. Math. Anal. Appl. 369(1), 323–345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Messaoudi S.A., Said-Houari B.: Energy decay in a transmission problem in thermoelasticity of type III. IMA J. Appl. Math. 74(3), 344–360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Green A.E., Naghdi P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Green A.E., Naghdi P.M.: On undamped heat waves in an elastic solid. J. Thermal Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  19. Lord H.W., Shulman V.: A generalized dynamical theory of thermo elasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  20. Chandrasekharaiah D.S.: Thermo elasticity with second sound–a review. Appl. Mech. Rev. 39(3), 355–376 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ignaczak J., Ostoja-Starzewski M.: Thermoelasticity with Finite Wave Speeds, Oxford mathematical Monographs. Oxford University Press, New York (2010)

    Google Scholar 

  22. Fernandez Sare H.D., Munoz Rivera J.E., Racke R.: Stability for a transmission problem in thermoelasticity with second sound. J. Thermal Stress. 31(12), 1170–1189 (2008)

    Article  Google Scholar 

  23. Adams R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  24. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin (1983)

    Book  MATH  Google Scholar 

  25. Lyubich Yu.I., Phóng V.Q.: Asymptotic stability of linear differential equations in Banach spaces. Stud. Math. 88, 34–37 (1988)

    Google Scholar 

  26. Mennicken, R., Möller, M.: Non-self-adjoint Boundary Eigenvalue Problem, (Ed. by Jan Van Mill), Mathematics Studies 192, North-Holland, Amsterdam (2003)

  27. Tretter C.: Boundary eigenvalue problems for differential equations Nη = λ Pη with λ−polynomial boundary conditions. J. Differ. Equ. 170, 408–471 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu G.Q., Han Z.J., Yung S.P.: Riesz basis property of serially connected Timoshenko beams. Int. J. Control 80, 470–485 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Young R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, London (1980)

    MATH  Google Scholar 

  30. Conway J.B.: Functions of One Complex Variable. Springer, New York (1978)

    Book  Google Scholar 

  31. Xu G.Q., Yung S.P.: The expansion of semigroup and a Riesz basis criterion. J. Differ. Equ. 210, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo B.Z., Xu G.Q.: Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition. J. Funct. Anal. 231, 245–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu Z., Rao R.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56, 630–644 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hao J.H., Liu Z.: Stability of an abstract system of coupled hyperbolic and parabolic equations. Z. Angew. Math. Phys. 64, 1145–1159 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gearhart L.M.: Spectral theory for contraction semigroups on Hilbert space. Trans. Am. Math. Soc. 236, 385–394 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Prüss J.: On the spectrum of C 0-semigroups. Trans. Am. Math. Soc. 284, 847–857 (1984)

    Article  MATH  Google Scholar 

  37. Huang F.L.: Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Diff. Eqs. 1, 43–56 (1985)

    MATH  Google Scholar 

  38. Liu Z., Zheng S.: Semigroups Associated with Dissipative Systems. Chapman&Hall/CRC, Boca Raton (1999)

    MATH  Google Scholar 

  39. Bochev A., Tomilov Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)

    Article  MathSciNet  Google Scholar 

  40. Trefethen L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Jie Han.

Additional information

This research is supported by the Natural Science Foundation of China Grants NSFC-61104130, 61174080 and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110032120074).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, ZJ., Xu, GQ. Spectrum and stability analysis for a transmission problem in thermoelasticity with a concentrated mass. Z. Angew. Math. Phys. 66, 1717–1736 (2015). https://doi.org/10.1007/s00033-015-0504-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0504-3

Mathematics Subject Classification

Keywords

Navigation