Abstract
This paper concerns about the Cauchy problem for the three-dimensional Navier–Stokes equations and provides a regularity criterion in terms of the gradient of one velocity component. This improves previous results.
Similar content being viewed by others
References
Beirãoda da Veiga H.: A new regularity class for the Navier–Stokes equations in \({\mathbb{R}^{n}}\). Chin. Ann. Math. Ser. B 16, 407–412 (1995)
Cao C.S., Titi E.S.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57, 2643–2661 (2008)
Chemin, J.Y., Zhang, P.: On the critical one component regularity for the 3-D Navier–Stokes equations (2013). arXiv:1310.6442 [math.AP]
Constantin, P., Fioas, C.: Navier–Stokes Equations, Chicago Lectures in Mathematics Series (1988)
Escauriaza L., Serëgin G.A., Šverák V.: L 3,∞-solutions of Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003)
Hopf E.: Über die Anfangwertaufgaben für die hydromischen Grundgleichungen. Math. Nachr. 4, 213–321 (1951)
Jia X.J., Zhou Y.: Remarks on regularity criteria for the Navier–Stokes equations via one velocity component. Nonlinear Anal. Real World Appl. 15, 239–245 (2014)
Kukavica I., Ziane M.: One component regularity for the Navier–Stokes equations. Nonlinearity 19, 453–469 (2006)
Kukavica I., Ziane M.: Navier–Stokes equations with regularity in one direction. J. Math. Phys. 48, 065203 (2007)
Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Moscow (1970)
Lemarié-Rieusset P.G.: Recent Developments in the Navier–Stokes Problem. Chapman and Hall, London (2002)
Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)
Neustupa J., Novotný A., Penel P.: An interior regularity of a weak solution to the Navier–Stokes equations in dependence on one component of velocity, topics in mathematical fluid mechanics. Quad. Mat. 10, 163–183 (2002)
Neustupa J., Penel P.: Regularity of a Suitable Weak Solution to the Navier–Stokes Equations as a Consequence of Regularity of One Velocity Component, Applied Nonlinear Analysis, pp. 391–402. Kluwer/Plenum, New York (1999)
Ohyama T.: Interior regularity of weak solutions of the time-dependent Navier–Stokes equation. Proc. Jpn. Acad. 36, 273–277 (1960)
Pokorný M.: On the result of He concerning the smoothness of solutions to the Navier–Stokese equations. Electron. J. Differ. Equ. 2003, 1–8 (2003)
Prodi G.: Un teorema di unicitá per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)
Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Nonlinear Problems, Proceedings of Symposium, Madison, Wisconsin, University of Wisconsin Press, Madison, Wisconsin, pp. 69–98 (1963)
Skalák Z.: On the regularity of the solutions to the Navier–Stokes equations via the gradient of one velocity component. Nonlinear Anal. 104, 84–89 (2014)
Skalák Z.: A note on the regularity of the solutions to the Navier–Stokes equations via the gradient of one velocity component. J. Math. Phys. 55, 121506 (2014)
Takahashi S.: On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscr. Math. 69, 237–254 (1990)
Temam R.: Navier–Stokes Equations, Theory and Numerical Analysis. AMS Chelsea Publishing, New York (2001)
Zhang Z.J.: A Serrin-type regularity criterion for the Navier–Stokes equations via one velocity component. Commun. Pure Appl. Anal. 12, 117–124 (2013)
Zhang Z.J.: Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component. Nonlinear Anal. 115, 41–49 (2015)
Zheng X.X.: A regularity criterion for the tridimensional Navier–Stokes equations in terms of one velocity component. J. Differ. Equ. 256, 283–309 (2014)
Zhou Y.: A new regularity criterion for the Navier–Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9, 563–578 (2002)
Zhou Y.: A new regularity criterion for weak solutions to the Navier–Stokes equations. J. Math. Pures Appl. 84, 1496–1514 (2005)
Zhou Y., Pokorný M.: On a regularity criterion for the Navier–Stokes equations involving gradient of one velocity component. J. Math. Phys. 50, 123514 (2009)
Zhou Y., Pokorný M.: On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearity 23, 1097–1107 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, Z. An almost Serrin-type regularity criterion for the Navier–Stokes equations involving the gradient of one velocity component. Z. Angew. Math. Phys. 66, 1707–1715 (2015). https://doi.org/10.1007/s00033-015-0500-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00033-015-0500-7