Skip to main content
Log in

An almost Serrin-type regularity criterion for the Navier–Stokes equations involving the gradient of one velocity component

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper concerns about the Cauchy problem for the three-dimensional Navier–Stokes equations and provides a regularity criterion in terms of the gradient of one velocity component. This improves previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirãoda da Veiga H.: A new regularity class for the Navier–Stokes equations in \({\mathbb{R}^{n}}\). Chin. Ann. Math. Ser. B 16, 407–412 (1995)

    Google Scholar 

  2. Cao C.S., Titi E.S.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57, 2643–2661 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chemin, J.Y., Zhang, P.: On the critical one component regularity for the 3-D Navier–Stokes equations (2013). arXiv:1310.6442 [math.AP]

  4. Constantin, P., Fioas, C.: Navier–Stokes Equations, Chicago Lectures in Mathematics Series (1988)

  5. Escauriaza L., Serëgin G.A., Šverák V.: L 3,∞-solutions of Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003)

    Article  Google Scholar 

  6. Hopf E.: Über die Anfangwertaufgaben für die hydromischen Grundgleichungen. Math. Nachr. 4, 213–321 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jia X.J., Zhou Y.: Remarks on regularity criteria for the Navier–Stokes equations via one velocity component. Nonlinear Anal. Real World Appl. 15, 239–245 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kukavica I., Ziane M.: One component regularity for the Navier–Stokes equations. Nonlinearity 19, 453–469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kukavica I., Ziane M.: Navier–Stokes equations with regularity in one direction. J. Math. Phys. 48, 065203 (2007)

    Article  MathSciNet  Google Scholar 

  10. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Moscow (1970)

  11. Lemarié-Rieusset P.G.: Recent Developments in the Navier–Stokes Problem. Chapman and Hall, London (2002)

    Book  MATH  Google Scholar 

  12. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  13. Neustupa J., Novotný A., Penel P.: An interior regularity of a weak solution to the Navier–Stokes equations in dependence on one component of velocity, topics in mathematical fluid mechanics. Quad. Mat. 10, 163–183 (2002)

    Google Scholar 

  14. Neustupa J., Penel P.: Regularity of a Suitable Weak Solution to the Navier–Stokes Equations as a Consequence of Regularity of One Velocity Component, Applied Nonlinear Analysis, pp. 391–402. Kluwer/Plenum, New York (1999)

    Google Scholar 

  15. Ohyama T.: Interior regularity of weak solutions of the time-dependent Navier–Stokes equation. Proc. Jpn. Acad. 36, 273–277 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pokorný M.: On the result of He concerning the smoothness of solutions to the Navier–Stokese equations. Electron. J. Differ. Equ. 2003, 1–8 (2003)

    Google Scholar 

  17. Prodi G.: Un teorema di unicitá per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Nonlinear Problems, Proceedings of Symposium, Madison, Wisconsin, University of Wisconsin Press, Madison, Wisconsin, pp. 69–98 (1963)

  19. Skalák Z.: On the regularity of the solutions to the Navier–Stokes equations via the gradient of one velocity component. Nonlinear Anal. 104, 84–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Skalák Z.: A note on the regularity of the solutions to the Navier–Stokes equations via the gradient of one velocity component. J. Math. Phys. 55, 121506 (2014)

    Article  Google Scholar 

  21. Takahashi S.: On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscr. Math. 69, 237–254 (1990)

    Article  MATH  Google Scholar 

  22. Temam R.: Navier–Stokes Equations, Theory and Numerical Analysis. AMS Chelsea Publishing, New York (2001)

    MATH  Google Scholar 

  23. Zhang Z.J.: A Serrin-type regularity criterion for the Navier–Stokes equations via one velocity component. Commun. Pure Appl. Anal. 12, 117–124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang Z.J.: Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component. Nonlinear Anal. 115, 41–49 (2015)

    Article  MathSciNet  Google Scholar 

  25. Zheng X.X.: A regularity criterion for the tridimensional Navier–Stokes equations in terms of one velocity component. J. Differ. Equ. 256, 283–309 (2014)

    Article  Google Scholar 

  26. Zhou Y.: A new regularity criterion for the Navier–Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9, 563–578 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Zhou Y.: A new regularity criterion for weak solutions to the Navier–Stokes equations. J. Math. Pures Appl. 84, 1496–1514 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou Y., Pokorný M.: On a regularity criterion for the Navier–Stokes equations involving gradient of one velocity component. J. Math. Phys. 50, 123514 (2009)

    Article  MathSciNet  Google Scholar 

  29. Zhou Y., Pokorný M.: On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearity 23, 1097–1107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zujin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z. An almost Serrin-type regularity criterion for the Navier–Stokes equations involving the gradient of one velocity component. Z. Angew. Math. Phys. 66, 1707–1715 (2015). https://doi.org/10.1007/s00033-015-0500-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0500-7

Mathematics Subject Classification

Keywords

Navigation