Skip to main content
Log in

Two-dimensional Green’s functions for the fluid and piezoelectric two-phase plane under the line forces and line charge

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The two-dimensional Green’s functions for two line forces and a line charge applied in the interior of the fluid and piezoelectric two-phase plane are presented in this paper. By virtue of the two-dimensional general solutions which are expressed in harmonic functions, six newly introduced harmonic functions with undetermined constants are constructed. Then, all the piezoelectric components in the fluid and piezoelectric two-phase plane can be derived by substituting these harmonic functions into the corresponding general solutions. The undetermined constants can be obtained by the interface compatibility conditions and the mechanical and electric equilibrium conditions. Numerical results are given graphically by contours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lifshitz I.M., Rozentsveig L.N.: Construction of the Green tensor for the fundamental equation of elasticity theory in the case of an unbounded elastically anisotropic medium. Zhurnal Eksperimental, Noi I Teioretical Fiziki 17, 783–791 (1947)

    Google Scholar 

  2. Lejcek J.: The Green function of the theory of elasticity in an anisotropic hexagonal medium. J. Phys. B 19, 799–803 (1969)

    Google Scholar 

  3. Elliott H.A.: Three-dimensional stress distributions in hexagonal aeolotropic crystals. Math. Proc. Camb. Philos. Soc. 44, 522–533 (1948)

    Article  Google Scholar 

  4. Kroner E.: Das fundamentalintegral der anisotropen elastischen diferentialgleichungen. Zeitschrift fur Physik 136, 402–410 (1953)

    Article  MathSciNet  Google Scholar 

  5. Willis J.R.: The elastic interaction energy of dislocation loops in anisotropic media. Q. J. Mech. Appl. Math. 18, 419–433 (1965)

    Article  MathSciNet  Google Scholar 

  6. Sveklo V.A.: Concentrated force in a transversely isotropic half-space and in a composite space. J. Appl. Math. Mech. 33, 532–537 (1969)

    Article  Google Scholar 

  7. Pan Y.C., Chou T.W.: Point force solution for an infinite transversely isotropic solid. ASME J. Appl. Mech. 98, 608–612 (1976)

    Article  Google Scholar 

  8. Melan E., Parkus H.: Warmespannungen Infolge Stationarer Temperaturfelder. Springer, Vien (1953)

    Google Scholar 

  9. Sharma B.: Thermal stresses in transversely isotropic semi-infinite elastic solids. ASME J. Appl. Mech. 25, 86–88 (1958)

    MATH  Google Scholar 

  10. Nowacki W.: Thermoelasticity. Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

  11. Yu H.Y., Sanday S.C., Rath B.B.: Thermoelastic stresses in bimaterials. Philos. Mag. 65, 1049–1064 (1992)

    Article  Google Scholar 

  12. Chen W.Q., Ding H.J., Ling D.S.: Thermoelastic field of transversely isotropic elastic medium containing a penny-shaped crack: exact fundamental solution. Int. J. Solids Struct. 41, 69–83 (2004)

    Article  MATH  Google Scholar 

  13. Hou P.F., Leung A.T.Y., Chen C.P.: a Fundamental solution for transversely isotropic thermoelastic materials. Int. J. Solids Struct. 45, 392–408 (2008)

    Article  MATH  Google Scholar 

  14. Hou P.F., Leung A.Y.T., He Y.J.: Three-dimensional Green’s functions for transversely isotropic thermoelastic bimaterials. Int. J. Solids Struct. 45, 6100–6113 (2008)

    Article  MATH  Google Scholar 

  15. Berger J.R., Tewary V.K.: Greens functions for boundary element analysis of anisotropic bimaterials. Eng. Anal. Bound. Elem. 25, 279–288 (2001)

    Article  MATH  Google Scholar 

  16. Kattis M.A., Papanikos P., Providas E.: Thermal Green’s functions in plane anisotropic bimaterials. Acta Mechanica 173, 65–76 (2004)

    Article  MATH  Google Scholar 

  17. Deeg, W.F.: The Analysis of Dislocation, Crack, and Inclusion Problem in Piezoelectric Solids. Ph.D. Dissertation, Stanford University (1980)

  18. Wang B.: Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J. Solids Struct. 29, 293–308 (1992)

    Article  MATH  Google Scholar 

  19. Benveniste Y.: The determination of the elastic and electric fields in a piezoelectric inhomogeneity. J. Appl. Phys. 72, 1086–1095 (1992)

    Article  Google Scholar 

  20. Chen T.Y.: Green’s functions and the non-uniform transformation problem in a piezoelectric medium. Mech. Res. Commun. 20, 271–278 (1993)

    Article  MATH  Google Scholar 

  21. Chen T.Y., Lin F.Z.: Numerical evaluation of derivatives of the anisotropic piezoelectric Green’s functions. Mech. Res. Commun. 20, 501–506 (1993)

    Article  MATH  Google Scholar 

  22. Pan E.N.: A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Eng. Anal. Bound. Elem. 23, 67–76 (1999)

    Article  MATH  Google Scholar 

  23. Gao C., Fan W.: Green’s functions for the plane problem in a half infinite piezoelectric medium. Mech. Res. Commun. 25, 69–74 (1998)

    Article  MATH  Google Scholar 

  24. Pan E., Tonon F.: Three-dimensional Green’s functions in anisotropic piezoelectric solids. Int. J. Solids Struct. 37, 943–958 (2000)

    Article  MATH  Google Scholar 

  25. Pan E., Yuan F.G.: Three-dimensional Green’s functions in anisotropic piezoelectric bimaterials. Int. J. Eng. Sci. 38, 1939–1960 (2000)

    Article  Google Scholar 

  26. Sosa H.A., Castro M.A.: On concentrated load at boundary of a piezoelectric half-plane. J. Mech. Phys. Solids 42, 1105–1122 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee J.S., Jiang L.Z.: A boundary integral formulation and 2D fundamental solution for piezoelectric media. Mech. Res. Commun. 22, 47–54 (1994)

    Article  Google Scholar 

  28. Ding H.J., Wang G.Q., Chen W.Q.: Fundamental solution for plane problem of piezoelectric materials. Sci. China Ser. E 40, 331–336 (1997)

    Article  MATH  Google Scholar 

  29. Ding H.J., Wang G.Q., Chen W.Q.: A boundary integral formulation and 2D fundamental solutions for piezoelectric media. Comput. Methods Appl. Mech. Eng. 158, 65–80 (1998)

    Article  MATH  Google Scholar 

  30. Ding H.J., Wang G.Q., Chen W.Q.: Green’s functions for a two-phase infinite piezoelectric plane. Proc. R. Soc. Lond. (A) 453, 2241–2257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang Z.K., Chen G.C.: A general solution and the application of space axisymmetric problem in piezoelectric materials. Appl. Math. Mech. 15, 615–626 (1994)

    Article  MATH  Google Scholar 

  32. Wang Z.K., Zheng B.L.: The general solution of three-dimensional problem in piezoelectric media. Int. J. Solids Struct. 31, 105–115 (1995)

    Google Scholar 

  33. Dunn M.L.: Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. Int. J. Eng. Sci. 32, 119–131 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ding H.J., Liang J., Chen B.: Fundamental solution for transversely isotropic piezoelectric media. Sci. China (A) 39, 766–775 (1996)

    MATH  Google Scholar 

  35. Ding H.J., Chen B., Liang J.: On the Green’s functions for two-phase transversely isotropic piezoelectric media. Int. J. Solids Struct. 34, 3041–3057 (1997)

    Article  MATH  Google Scholar 

  36. Dunn M.L., Wienecke H.A.: Green’s functions for transversely isotropic piezoelectric solids. Int. J. Solids Struct. 33, 4571–4581 (1996)

    Article  MATH  Google Scholar 

  37. Dunn M.L., Wienecke H.A.: Half-space Green’s functions for transversely isotropic piezoelectric solids. ASME J. Appl. Mech. 66, 675–679 (1999)

    Article  Google Scholar 

  38. Dunn M.L., Wienecke H.A.: Inclusions and inhomogeneities in transversely isotropic piezoelectric solids. Int. J. Solids Struct. 34, 3571–3582 (1997)

    Article  MATH  Google Scholar 

  39. Qin Q.H., Mai Y.W.: Thermoelectroelastic Green’s function and its application for bimaterial of piezoelectric materials. Arch. Appl. Mech. 68, 433–444 (1998)

    Article  MATH  Google Scholar 

  40. Qin Q.H.: Thermoelectroelastic Green’s function for a piezoelectric plate containing an elliptic hole. Mech. Mater. 30, 21–29 (1998)

    Article  Google Scholar 

  41. Qin Q.H.: Green’s function for thermopiezoelectric materials with holes of various shapes. Arch. Appl. Mech. 69, 406–418 (1999)

    Article  MATH  Google Scholar 

  42. Qin Q.H.: Thermoelectroelastic Green’s function for thermal load inside or on the boundary of an elliptic inclusion. Mech. Mater. 31, 611–626 (1999)

    Article  Google Scholar 

  43. Qin Q.H.: Thermoelectroelastic solution on elliptic inclusions and its application to crack-inclusion problems. Appl. Math. Modelling 25, 1–23 (2000)

    Article  MATH  Google Scholar 

  44. Chen W.Q.: On the general solution for piezothermoelasticity for transverse isotropy with application. ASME J. Appl. Mech. 67, 705–711 (2000)

    Article  MATH  Google Scholar 

  45. Chen W.Q., Lim C.W., Ding H.J.: Point temperature solution for a penny-shaped crack in an infinite transversely isotropic thermo-piezo-elastic medium. Eng. Anal. Bound. Elem. 29, 524–532 (2005)

    Article  MATH  Google Scholar 

  46. Xiong S.M., Hou P.F., Yang S.Y.: 2-D Green’s functions for semi-infinite orthotropic piezothermoelastic plane. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1003–1010 (2010)

    Article  Google Scholar 

  47. Hou P.F., Leung A.Y.T., Chen C.P.: Three-dimensional fundamental solution for transversely isotropic piezothermoelastic material. Int. J. Numer. Methods Eng. 78, 84–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hou P.F., Zhou X.H., He Y.J.: Green’s functions for a semi-infinite transversely isotropic piezothermoelastic material. Smart Mater. Struct. 16, 1915–1923 (2007)

    Article  Google Scholar 

  49. Hou P.F., Leung A.Y.T.: Three-dimensional Green’s functions for two-phase transversely isotropic piezothermoelastic media. J. Intell. Mater. Syst. Struct. 20, 11–21 (2009)

    Article  Google Scholar 

  50. Erturk A., Inman D.J.: Piezoelectric Energy Harvesting. Wiley, New Jersey (2011)

    Book  Google Scholar 

  51. Xie X.D., Wang Q., Wu N.: Energy harvesting from transverse ocean waves by a piezoelectric plate. Int. J. Eng. Sci. 81, 41–48 (2014)

    Article  Google Scholar 

  52. Kim S.H., Ahn J.H., Chung H.M., Kang H.W.: Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system. Sens. Actuators A: Phys. 167, 468–483 (2011)

    Article  Google Scholar 

  53. Meng J., Xie W.G., Brennan M., Runge K., Bradshaw D.: Measuring turbulence in a flotation cell using the piezoelectric sensor. Miner. Eng. 66(68), 84–93 (2014)

    Article  Google Scholar 

  54. Tomimatsu Y., Takahashi H., Kuwana K., Kobayashi T., Matsumoto K., Shimoyama I., Itoh T., Maeda R.: A piezoelectric flow sensor for use as a wake-up switch for a wireless sensor network node. Mechatronics 23, 893–897 (2013)

    Article  Google Scholar 

  55. Hsieh H.Y., Zemel J.N.: Pyroelectric anemometry: frequency, geometry and gas dependence. Sens. Actuators A: Phys. 49, 133–140 (1995)

    Article  Google Scholar 

  56. Hsieh, H.Y., Spetz1, A., Zemel, J.N.: Pyroelectric anemometry: vector and swirl measurements. Sens. Actuators A: Phys. 49, 141–147 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Fei Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, PF., Tian, W. & Jiang, HY. Two-dimensional Green’s functions for the fluid and piezoelectric two-phase plane under the line forces and line charge. Z. Angew. Math. Phys. 66, 2001–2023 (2015). https://doi.org/10.1007/s00033-014-0487-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0487-5

Mathematics Subject Classification

Keywords

Navigation