Skip to main content
Log in

Effective thermal conductivity of helium II: from Landau to Gorter–Mellink regimes

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The size-dependent and flux-dependent effective thermal conductivity of narrow channels filled with He II is analyzed. The classical Landau evaluation of the effective thermal conductivity of quiescent He II is extended to describe the transition to fully turbulent regime, where the heat flux is proportional to the cubic root of the temperature gradient (Gorter–Mellink regime). To do so, we use an expression for the quantum vortex line density L in terms of the heat flux considering the influence of the walls. From it, and taking into account the friction force of normal component against the vortices, we compute the effective thermal conductivity as a function of the heat flux, and we discuss in detail the corresponding size dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Sciver S.W.: Helium Cryogenics, 2nd edn. Springer, Berlin (2012)

    Book  Google Scholar 

  2. Jones M.C., Arp V.D.: Review of hydrodynamics and heat transfer for large helium cooling systems. Cryogenics 18, 483–490 (1978)

    Article  Google Scholar 

  3. http://www.esa.int/TEC/Thermal_control/SEMZOWBE8YE_0.html

  4. Bruus H.: Theoretical Microfluidics. Oxford University Press, Oxford (2007)

    Google Scholar 

  5. Tabeling P.: Introduction to Microfluidics. Oxford University Press, Oxford (2005)

    Google Scholar 

  6. Bertman B., Kitchens T.A.: Heat transport in superfluid filled capillaries. Cryogenics 8, 36–41 (1968)

    Article  Google Scholar 

  7. Arp V.: Heat transport through helium II. Cryogenics 10, 96–106 (1970)

    Article  Google Scholar 

  8. Brewer D.F., Edwards D.O.: The Heat Conductivity and Viscosity of Liquid Helium II. Proc. R. Soc. Lond. A 251, 247–264 (1959)

    Article  Google Scholar 

  9. Brewer D.F., Edwards D.O.: Heat conduction by liquid helium II in capilliary tubes. I: Transition to supercritical conduction. Philos. Mag. 6(66), 775–790 (1961)

    Article  Google Scholar 

  10. Brewer D.F., Edwards D.O.: Heat conduction by liquid helium ii in capillary tubes II. Measurements of the pressure gradient. Philos. Mag. 6, 1173–1181 (1961)

    Article  Google Scholar 

  11. Brewer D.F., Edwards D.O.: Heat conduction by liquid helium II in capillary tubes III. Mutual friction. Philos. Mag. 7, 721–735 (1962)

    Article  Google Scholar 

  12. Kimura N., Nakai H., Murakami M., Yamamoto A., Shintomi T.: A study on the heat transfer properties of pressurized Helium II through fine channels. AIP Conf. Proc. 823, 97–104 (2006)

    Article  Google Scholar 

  13. Chase C.E.: Thermal Conduction in Liquid Helium II. I. Temperature dependence. Phys. Rev. 127, 361–370 (1962)

    Article  Google Scholar 

  14. Schmidt R., Wiechert H.: Heat transport of helium II in restricted geometries. Zeitschrift fur Physik B Condensed Matter 36, 1–12 (1979)

    Google Scholar 

  15. Granieri P.P., Baudouy B., Four A., Lentijo F., Mapelli A., Petagna P., Tommasini D.: Steady-state heat transfer through micro-channels in pressurized He II. AIP Conf. Proc. 1434, 231–238 (2011)

    Google Scholar 

  16. Landau L.D., Lifshitz E.M.: Fluid Mechanics. Elsevier, Oxford (1987)

    MATH  Google Scholar 

  17. Vinen W.F.: Mutual friction in a heat current in liquid helium II. III. Theory of the mutual friction. Proc. R. Lond. A 240, 493–515 (1957)

    Article  Google Scholar 

  18. Donnelly R.J.: Quantized Vortices in Helium II. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  19. Barenghi C.F., Donnelly R.J., Vinen W.F.: Quantized Vortex Dynamics and Superfluid Turbulence. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  20. Nemirovskii S.K.: Quantum turbulence: theoretical and numerical problems. Phys. Rep. 524, 85–202 (2013)

    Article  MathSciNet  Google Scholar 

  21. Tsubota M., Kobayashi M., Takeuchi H.: Quantum hydrodynamics. Phys. Rep. 522, 191 (2011)

    Article  MathSciNet  Google Scholar 

  22. Martin K.P., Tough J.T.: Evolution of superfluid turbulence in thermal counterflow. Phys. Rev. B 27, 2788–2799 (1983)

    Article  Google Scholar 

  23. Childers R.K., Tough J.T.: Helium II thermal counterflow: temperature- and pressure-difference data and analysis in terms of the Vinen theory. Phys. Rev. B 13, 1040–1055 (1976)

    Article  Google Scholar 

  24. Keesom W.H., Keesom D.P., Saris B.F.: A few measurements on the heat conductivity of liquid helium II. Physica 5, 281–285 (1938)

    Article  Google Scholar 

  25. Keesom W.H., Saris B.F., Meyer L.: New measurements on the heat conductivity of liquid helium II. Physica 7, 817–830 (1940)

    Article  Google Scholar 

  26. Keesom W.H., Duyckaerts G.: Mesures sur la conductibilité thermique et l’effet thermomécanique de l’helium liquide II. Physica 13, 153–179 (1947)

    Article  Google Scholar 

  27. Allen J.F., Ganz E.: The influence of pressure on the thermal conductivity of liquid He II. Proc. R. Soc. A 171, 242–250 (1939)

    Article  Google Scholar 

  28. Allen J.F., Reekie J.: Momentum transfer and heat flow in liquid helium II. Proc. Camb. Philos. Soc. 35, 114–122 (1939)

    Article  Google Scholar 

  29. Winkel P., Delsing A.M.G., Poll J.D.: On the existence of critical velocities in liquid helium II. Physica 21, 331–344 (1955)

    Article  Google Scholar 

  30. Fairbank H.A., Wilks J.: Heat Transfer in Liquid Helium below 1 degrees K. Proc. R. Soc. A 231, 545–555 (1955)

    Article  Google Scholar 

  31. Mendelsohn K.: Liquid Helium, Encyclopedia of Physics, vol. XV. Springer, Berlin (1956)

    Google Scholar 

  32. Jou, D., Sciacca, M.: Quantum Reynolds number for superfluid counterflow turbulence. Boll. di mat. Pura ed appl.VI (2014), 95–103, ISBN: 978-88-548-6942-4

  33. Mongiovì M.S.: Extended irreversible thermodynamics of liquid helium II. Phys. Rev. B 48, 6276–6283 (1993)

    Article  Google Scholar 

  34. Mongiovì M.S., Jou, D.: Evolution equations in superfluid turbulence. In: Das, M.P. Condensed Matter: New Research, pp. 1 Nova Science Publishers, New York (2007)

  35. Tisza L.: Transport phenomena in helium II. Nature 141, 913 (1938)

    Article  Google Scholar 

  36. Jou D., Casas-Vázquez J., Criado-Sancho M.: Thermodynamics of Fluids Under Flow, 2nd edn. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  37. Mongiovì M.S.: Extended irreversible thermodynamics of liquid helium II: boundary condition and propagation of fourth sound. Physica A 292, 55–74 (2001)

    Article  MATH  Google Scholar 

  38. Mongiovì M.S., Jou D.: Generalization of Vinen’s equation including transition to superfluid turbulence. J Phys. Condens. Matter 17, 4423–4440 (2005)

    Article  Google Scholar 

  39. Sooraj R., Sameen A.: Effect of vortex line distribution in superfluid plane Poiseuille flow instability. J. Fluid Mech. 720, R1–15 (2013)

    Article  MathSciNet  Google Scholar 

  40. Galantucci L., Barenghi C.F., Sciacca M., Quadrio M., Luchini P.: Turbulent Superfluid Profiles in a Counterflow Channel. J. Low Temp. Phys. 162, 354–360 (2011)

    Article  Google Scholar 

  41. Donnelly R.J., Barenghi C.F.: The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. Ref. Data 27, 1217–1274 (1998)

    Article  Google Scholar 

  42. Melotte D.J., Barenghi C.F.: Transition to normal fluid turbulence in helium II. Phys. Rev. Lett. 80, 4181–4184 (1998)

    Article  Google Scholar 

  43. Brugarino, T., Mongiovì, M.S., Sciacca, M.: Waves on a vortex filament: exact solutions of dynamical equations. Z. Angew. Math. Phys. (2014)

  44. Sciacca, M., Sellitto, A., Jou, D.: Transition to ballistic regime for heat transport in helium II. Phys. Lett. A 378, 2471–2477 (2014)

  45. Snyder N.S.: Heat transport through helium II: Kapitza conductance. Cryogenics 10, 89–95 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sciacca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciacca, M., Jou, D. & Mongiovì, M.S. Effective thermal conductivity of helium II: from Landau to Gorter–Mellink regimes. Z. Angew. Math. Phys. 66, 1835–1851 (2015). https://doi.org/10.1007/s00033-014-0479-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0479-5

Mathematics Subject Classification

Keywords

Navigation