Skip to main content
Log in

Boundary behavior of large viscosity solutions to infinity Laplace equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we give the structure conditions on two classes of functions f(u): one grows up at infinity faster than any u p (p > 3) and the other is normalized regularly varying at infinity with the critical index 3, and we show the new boundary behavior of boundary blow-up viscosity solutions to the equation \({\triangle_\infty u = b(x)f(u),\, u \geq 0, x \in \Omega,}\) where \({\Omega}\) is a bounded domain with smooth boundary in \({\mathbb R^N}\), the operator \({\triangle_\infty}\) is the \({\infty}\)-Laplacian, and \({b \in C(\bar{\Omega})}\) which is nonnegative in \({\Omega}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcón S., García-Melián J., Quaas A.: Keller–Osserman type conditions for some elliptic problems with gradient terms. J. Differ. Equ. 252, 886–914 (2012)

    Article  MATH  Google Scholar 

  2. Alarcón S., Quaas A.: Large viscosity solutions for some fully nonlinear equations. Nonlinear Differ. Equ. Appl. 20, 1453–1472 (2013)

    Article  MATH  Google Scholar 

  3. Anedda C., Porru G.: Boundary behaviour for solutions of boundary blow-up problems in a borderline case. J. Math. Anal. Appl. 352, 35–47 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aronsson G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Armstrong S., Smart C.: An easy proof Jensen’s theorem on the uniqueness of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 37, 381–384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aronsson G., Crandall M.G., Juutinen P.: A tour of the theory of absolute minimizing functions. Bull. Am. Math. Soc. 41, 439–505 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bandle C., Marcus M.: Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. Anal. Math. 58, 9–24 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barron E.N., Evans L.C., Jensen R.R.: The infinity Laplacian, Aronssons equation and their generalizations. Trans. Am. Math. Soc. 360, 77–101 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barron E.N., Jensen R.R., Wang C.Y.: The Euler equation and absolute minimizers of \({L^\infty}\) functionals. Arch. Ration. Mech. Anal. 157, 255–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhattacharya T., Mohammed A.: On solutions to Dirichlet problems involving the infinity-Laplacian. Adv. Calc. Var. 4, 445–487 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bhattacharya T., Mohammed A.: Inhomogeneous Dirichlet problems involving the infinity Laplacian. Adv. Differ. Equ. 17, 225–266 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Bhattacharya T., Marazzi L.: An eigenvalue problem for the infinity-Laplacian. Electron. J. Differ. Equ. 2013(47), 1–30 (2013)

    MathSciNet  Google Scholar 

  13. Bieberbach L.: \({\triangle u = e^u}\) und die authomorphen funktionen. Math. Ann. 77, 173–212 (1916)

    Article  MathSciNet  Google Scholar 

  14. Bingham N.H., Goldie C.M., Teugels J.L.: Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  15. Champion T., De Pascale L.: A principle of comparison with distance functions for absolute minimizers. J. Convex Anal. 14, 515–541 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Cîrstea F., Rǎdulescu V.: Uniqueness of the blow-up boundary solution of logistic equations with absorbtion. C. R. Acad. Sci. Paris, Sér. I 335, 447– (2002)

    Article  MATH  Google Scholar 

  17. Cîrstea F., Du Y.: Large solutions of elliptic equations with a weakly superlinear nonlinearity. J. Anal. Math. 103, 261– (2007)

    Article  MathSciNet  Google Scholar 

  18. Cîrstea F.: Elliptic equations with competing rapidly varying nonlinearities and boundary blow-up. Adv. Differ. Equ. 12, 995– (2007)

    MATH  Google Scholar 

  19. Crandall M.G., Ishii H., Lions P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (New Series) 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crandall M.G., Evans L.C., Gariepy R.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13, 123–139 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Crandall, M.G.: A visit with the \({\infty}\)-Laplace equation. In: Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Math., vol. 1927, pp. 75–122. Springer, Berlin (2008)

  22. Crandall M.G., Lions P.L.: Viscosity solutions and Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Diaz G., Letelier R.: Explosive solutions of quasilinear elliptic equations: existence and uniqueness. Nonlinear Anal. 20, 97–125 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Evans L. C., Gangbo W.: Differential equations methods for the Monge- Kantorovich mass transfer problem. Memoirs. Am. Math. Soc. 137, 653 (1999)

    Article  Google Scholar 

  25. García-Melián J., Letelier Albornoz R., Sabina de Lis J.: Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up. Proc. Am. Math. Soc. 129, 3593–3602 (2001)

    Article  MATH  Google Scholar 

  26. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    Google Scholar 

  27. Jensen R.R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123, 51–74 (1993)

    Article  MATH  Google Scholar 

  28. Juutinen P., Lindqvist P., Manfredi J.J.: The \({\infty}\)-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Juutinen P., Lindqvist P.: On the higher eigenvalues for the \({\infty}\)-eigenvalue problem. Calc. Var. Partial Differ. Equ. 23, 169–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Juutinen P., Rossi J.D.: Large solutions for the infinity Laplacian. Adv. Calc. Var. 1, 271–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Keller J.B.: On solutions of \({\triangle u = f(u)}\). Commun. Pure Appl. Math. 10, 503–510 (1957)

    Article  MATH  Google Scholar 

  32. Kondratév V.A., Nikishkin V.A.: Asymptotics near the boundary of a solution of a singular boundary-value problem for a semilinear elliptic equation. Differ. Equ. 26, 345–348 (1990)

    Google Scholar 

  33. Lair A.V.: A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations. J. Math. Anal. Appl. 240, 205–218 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lazer A.C., McKenna P.J.: Asymptotic behavior of solutions of boundary blowup problems. Differ. Integral Equ. 7, 1001–1019 (1994)

    MathSciNet  MATH  Google Scholar 

  35. Loewner, C., Nirenberg, L.: Partial Differential Equations Invariant Under Conformal or Projective Transformations. Contributions to Analysis (a collection of papers dedicated to Lipman Bers), pp. 245–272. Academic Press, New York (1974)

  36. López-Gómez, J..: Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra. In: Chipot, M., Quittner, P. (eds.) Handbook of Differential Equations: Stationary Partial Differential Equations, vol. II, pp. 211– 309. Elsevier, Amsterdam (2005)

  37. Lu G., Wang P.: Inhomogeneous infinity Laplace equation. Adv. Math. 217, 1838–1868 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Maric, V.: Regular Variation and Differential Equations. Lecture Notes in Math., vol. 1726. Springer, Berlin (2000)

  39. Mohammed A.: Boundary asymptotic and uniqueness of solutions to the p-Laplacian with infinite boundary values. J. Math. Anal. Appl. 325, 480–489 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mohammed A., Mohammed S.: On boundary blow-up solutions to equations involving the \({\infty}\)-Laplacian. Nonlinear Anal. 74, 5238–5252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mohammed A., Mohammed S.: Boundary blow-up solutions to degenerate elliptic equations with non-monotone inhomogeneous terms. Nonlinear Anal. 75, 3249–3261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Osserman R.: On the inequality \({\triangle u \ge f(u)}\). Pac. J. Math. 7, 1641–1647 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  43. Peres Y., Schramm O., Sheffield S., Wilson D.B.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22, 167–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rǎdulescu, V.: Singular phenomena in nonlinear elliptic problems: from boundary blow-up solutions to equations with singular nonlinearities. In: Chipot, M. (ed.) Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, pp. 483–591. North-Holland Elsevier Science, Amsterdam (2007)

  45. Véron L.: Semilinear elliptic equations with uniform blowup on the boundary. J. Anal. Math. 59, 231–250 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang W., Gong H., Zheng S.: Asymptotic estimates of boundary blow-up solutions to the infinity Laplace equations. J. Differ. Equ. 256, 3721–3742 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yu Y.: \({L^\infty}\) variational problems and Aronsson equations. Arch. Ration. Mech. Anal. 182, 153–180 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yu Y.: Uniqueness of values of Aronsson operators and running costs in tug-of-war games. Ann. I. H. Poincaré Non-Linear. Anal. 26, 1299–1308 (2009)

    Article  MATH  Google Scholar 

  49. Zhang Z., Ma Y., Mi L., Li X.: Blow-up rates of large solutions for elliptic equations. J. Differ. Equ. 249, 180–199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang Z.: Boundary behavior of large solutions to semilinear elliptic equations with nonlinear gradient terms. Nonlinear Anal. 73, 3348–3363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Zhang.

Additional information

This work was supported in part by NNSF of P. R. China under Grant 11301301.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z. Boundary behavior of large viscosity solutions to infinity Laplace equations. Z. Angew. Math. Phys. 66, 1453–1472 (2015). https://doi.org/10.1007/s00033-014-0470-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0470-1

Mathematics Subject Classification

Keywords

Navigation