Abstract
We consider the Klein-Gordon–Schrödinger system with quadratic and cubic interactions. Smooth curves of periodic- and solitary-wave solutions are obtained via the implicit function theorem. Orbital instability of such waves is then established.
Similar content being viewed by others
References
Angulo J.: Nonlinear stability of periodic travelling-wave solutions to the Schrödinger and modified Korteweg-de Vries equations. J. Differ. Equ. 235, 1–30 (2007)
Angulo J., Pastor A.: Stability of periodic optical solitons for a nonlinear Schrödinger system. Proc. R. Soc. Edinb. Sect. A 139, 927–959 (2009)
Benjamin T.B.: The stability of solitary waves. Proc. R. Soc. Lond. Ser. A 338, 153–183 (1972)
Bona J.L.: On the stability theory of solitary waves. Proc. R. Soc. Lond. Ser. A 344, 363–374 (1975)
Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edn. Springer, New York (1971)
Cazenave T., Lions P.-L.: Orbital stability of standing waves for some Schrödinger equations. Comm. Math. Phys. 85, 549–561 (1982)
Deimling K.: Nonlinear Functional Analysis. Springer, New York (1985)
Eastham M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh (1973)
Gallay T, Hărăguş M: Stability of small periodic waves for nonlinear Schrödinger equation. J. Differ. Equ. 234, 544–581 (2007)
Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry II. J. Funct. Anal. 74, 308–348 (1990)
Grillakis M.: Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system. Comm. Pure Appl. Math. 43, 299–333 (1990)
Henry D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)
Kato, T.: Perturbation Theory for Linear Operators, Reprint of the 1980 Ed. Springer, Berlin (1995)
Kikuchi H.: Orbital stability of semitrivial standing waves for the KleinGordon–Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 315–323 (2011)
Kikuchi H., Ohta M.: Instability of standing waves for the Klein-Gordon–Schrödinger system. Hokkaido Math. J. 37, 735–748 (2008)
Kikuchi H., Ohta M.: Stability of standing waves for the Klein-Gordon–Schrödinger system. J. Math. Anal. Appl. 365, 109–114 (2010)
Magnus, W., Winkler, S.: Hill’s Equation. Interscience, Tracts Pure Appl. Math. New York (1976)
Natali F., Pastor A.: Stability and instability of periodic standing wave solutions for some Klein-Gordon equations. J. Math. Anal. Appl. 347, 428–441 (2008)
Natali F., Pastor A.: Stability properties of periodic standing waves for the Klein-Gordon–Schrödinger system. Commun. Pure Appl. Anal. 9, 413–430 (2010)
Natali F., Pastor A.: Orbital stability of periodic waves for the Klein-Gordon–Schrödinger system. Discret. Contin. Dyn. Syst. 31, 221–238 (2011)
Ohta, M.: Stability of Solitary Waves for Coupled Klein-Gordon–Schrödinger Equations in One Space Dimension, Variational Problems and Related Topics (Japanese) (Kyoto, 1998). Surikaisekikenkyu-sho Kokyuroku No. 1076, pp. 83–92 (1999)
Ohta M.: Stability of stationary states for the coupled Klein-Gordon–Schrödinger equations. Nonlinear Anal. 27, 455–461 (1996)
Pastor A.: Orbital stability of periodic travelling waves for coupled nonlinear Schrödinger equations. Electron. J. Differ. Equ. 2010, 1–19 (2010)
Shatah J., Strauss W.: Spectral condition for instability. Contemp. Math. 255, 189–198 (2000)
Tang X.-Y., Ding W.: The general Klein-Gordon–Schrödinger system: modulational instability and exact solutions. Phys. Scr. 77, 1–8 (2008)
Weinstein M.I.: Liapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39, 51–68 (1986)
Weinstein M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)
Yew A.C.: Stability analysis of multipulses in nonlinearly-coupled Schrödinger equations. Indiana Univ. Math. J. 49, 1079–1124 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Natali, F., Pastor, A. Orbital instability of standing waves for the quadratic–cubic Klein-Gordon–Schrödinger system. Z. Angew. Math. Phys. 66, 1341–1354 (2015). https://doi.org/10.1007/s00033-014-0467-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00033-014-0467-9