Skip to main content
Log in

Orbital instability of standing waves for the quadratic–cubic Klein-Gordon–Schrödinger system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the Klein-Gordon–Schrödinger system with quadratic and cubic interactions. Smooth curves of periodic- and solitary-wave solutions are obtained via the implicit function theorem. Orbital instability of such waves is then established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angulo J.: Nonlinear stability of periodic travelling-wave solutions to the Schrödinger and modified Korteweg-de Vries equations. J. Differ. Equ. 235, 1–30 (2007)

    Article  MATH  Google Scholar 

  2. Angulo J., Pastor A.: Stability of periodic optical solitons for a nonlinear Schrödinger system. Proc. R. Soc. Edinb. Sect. A 139, 927–959 (2009)

    Article  MATH  Google Scholar 

  3. Benjamin T.B.: The stability of solitary waves. Proc. R. Soc. Lond. Ser. A 338, 153–183 (1972)

    Article  MathSciNet  Google Scholar 

  4. Bona J.L.: On the stability theory of solitary waves. Proc. R. Soc. Lond. Ser. A 344, 363–374 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edn. Springer, New York (1971)

  6. Cazenave T., Lions P.-L.: Orbital stability of standing waves for some Schrödinger equations. Comm. Math. Phys. 85, 549–561 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deimling K.: Nonlinear Functional Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  8. Eastham M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh (1973)

    MATH  Google Scholar 

  9. Gallay T, Hărăguş M: Stability of small periodic waves for nonlinear Schrödinger equation. J. Differ. Equ. 234, 544–581 (2007)

    Article  MATH  Google Scholar 

  10. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry II. J. Funct. Anal. 74, 308–348 (1990)

    Article  MathSciNet  Google Scholar 

  11. Grillakis M.: Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system. Comm. Pure Appl. Math. 43, 299–333 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henry D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)

    MATH  Google Scholar 

  13. Kato, T.: Perturbation Theory for Linear Operators, Reprint of the 1980 Ed. Springer, Berlin (1995)

  14. Kikuchi H.: Orbital stability of semitrivial standing waves for the KleinGordon–Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 315–323 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kikuchi H., Ohta M.: Instability of standing waves for the Klein-Gordon–Schrödinger system. Hokkaido Math. J. 37, 735–748 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kikuchi H., Ohta M.: Stability of standing waves for the Klein-Gordon–Schrödinger system. J. Math. Anal. Appl. 365, 109–114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Magnus, W., Winkler, S.: Hill’s Equation. Interscience, Tracts Pure Appl. Math. New York (1976)

  18. Natali F., Pastor A.: Stability and instability of periodic standing wave solutions for some Klein-Gordon equations. J. Math. Anal. Appl. 347, 428–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Natali F., Pastor A.: Stability properties of periodic standing waves for the Klein-Gordon–Schrödinger system. Commun. Pure Appl. Anal. 9, 413–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Natali F., Pastor A.: Orbital stability of periodic waves for the Klein-Gordon–Schrödinger system. Discret. Contin. Dyn. Syst. 31, 221–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ohta, M.: Stability of Solitary Waves for Coupled Klein-Gordon–Schrödinger Equations in One Space Dimension, Variational Problems and Related Topics (Japanese) (Kyoto, 1998). Surikaisekikenkyu-sho Kokyuroku No. 1076, pp. 83–92 (1999)

  22. Ohta M.: Stability of stationary states for the coupled Klein-Gordon–Schrödinger equations. Nonlinear Anal. 27, 455–461 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pastor A.: Orbital stability of periodic travelling waves for coupled nonlinear Schrödinger equations. Electron. J. Differ. Equ. 2010, 1–19 (2010)

    MathSciNet  Google Scholar 

  24. Shatah J., Strauss W.: Spectral condition for instability. Contemp. Math. 255, 189–198 (2000)

    Article  MathSciNet  Google Scholar 

  25. Tang X.-Y., Ding W.: The general Klein-Gordon–Schrödinger system: modulational instability and exact solutions. Phys. Scr. 77, 1–8 (2008)

    Article  Google Scholar 

  26. Weinstein M.I.: Liapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39, 51–68 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weinstein M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yew A.C.: Stability analysis of multipulses in nonlinearly-coupled Schrödinger equations. Indiana Univ. Math. J. 49, 1079–1124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Natali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natali, F., Pastor, A. Orbital instability of standing waves for the quadratic–cubic Klein-Gordon–Schrödinger system. Z. Angew. Math. Phys. 66, 1341–1354 (2015). https://doi.org/10.1007/s00033-014-0467-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0467-9

Mathematics Subject Classification

Keywords

Navigation