Skip to main content
Log in

A shear–shear torsional beam model for nonlinear aeroelastic analysis of tower buildings

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, an equivalent one-dimensional beam model immersed in a three-dimensional space is proposed to study the aeroelastic behavior of tower buildings: linear and nonlinear dynamics are analyzed through a simple but realistic physical modeling of the structure and of the load. The beam is internally constrained, so that it is capable to experience shear strains and torsion only. The elasto-geometric and inertial characteristics of the beam are identified from a discrete model of three-dimensional frame, via a homogenization process. The model accounts for the torsional effect induced by the rotation of the floors around the tower axis; the macroscopic shear strain is produced by bending of the columns, accompanied by negligible rotation of the floors. Nonlinear aerodynamic forces are evaluated through the quasi-steady theory. The first aim is to investigate the effect of mechanical and aerodynamic coupling on the critical galloping conditions. Furthermore, the role of aerodynamic nonlinearities on the galloping post-critical behavior is analyzed through a perturbation solution which permits to obtain a reduced one-dimensional dynamical system, capable of capturing the essential dynamics of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greco L., Cuomo M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi:10.1177/1081286514531265

  3. Balendra T., Swaddiwudhipong S., Quek S.-T., Lee S.-L.: Approximate analysis of asymmetric buildings. J. Struct. Eng. 110(9), 2056–2072 (1984)

    Article  Google Scholar 

  4. Carpinteri A., Lacidogna G., Puzzi S.: A global approach for three dimensional analysis of tall buildings. Struct. Des. Tall Spec. Build. 19, 518–536 (2010)

    Google Scholar 

  5. Basu A.K., Dar G.Q.: Dynamic characteristics of coupled wall-frame systems. Earthq. Eng. Struct. Dyn. 10, 615–631 (1982)

    Article  Google Scholar 

  6. Miranda E., Taghavi S.: Approximate floor acceleration demands in multistory buildings. I: formulation. J. Struct. Eng. ASCE 131, 203–211 (2005)

    Article  Google Scholar 

  7. Malekinejad M., Rahgozar R.: A simple analytic method for computing the natural frequencies and mode shapes of tall buildings. Appl. Math. Model. 36, 3419–3432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Malekinejad M., Rahgozar R.: An analytical model for dynamic response analysis of tubular tall buildings. Struct. Des. Tall Spec. Build. 23(1), 67–80 (2014)

    Article  Google Scholar 

  9. Dym C.L., Williams H.E.: Estimating fundamental frequencies of tall buildings. J. Struct. Eng. ASCE 133(10), 1479–1483 (2007)

    Article  Google Scholar 

  10. Dym C.L.: Approximating frequencies of tall buildings. J. Struct. Eng. ASCE 139(2), 288–293 (2013)

    Article  Google Scholar 

  11. Patrickson C.P., Friedmann P.P.: Deterministic torsional building response to wind. J. Struct. Div. 105(ST12), 2621–2637 (1979)

    Google Scholar 

  12. Torkamani M.A.M., Pramono E.: Dynamic response of tall building to wind excitation. J. Struct. Eng. ASCE 111(4), 805–825 (1985)

    Article  Google Scholar 

  13. Balendra T., Nathan G.K., Kang K.H.: Deterministic model for wind-induced oscillations of buildings. J. Eng. Mech. ASCE 115(1), 179–199 (1989)

    Article  Google Scholar 

  14. Cluni F., Gioffrè M., Gusella V.: Dynamic response of tall buildings to wind loads by reduced order equivalent shear-beam models. J. Wind Eng. Ind. Aerodyn. 123, 339–348 (2013)

    Article  Google Scholar 

  15. Chajes M.J., Romstad K.M., McCallen D.B.: Analysis of multiple-bay frames using continuum model. J. Struct. Eng. ASCE 119(2), 522–546 (1993)

    Article  Google Scholar 

  16. Luongo A., Zulli D.: Mathematical Models of Beams and Cables. Wiley-ISTE, London (2013)

    Book  Google Scholar 

  17. Shuguo L., Qiusheng L., Guiqing L., Weilian Q.: An evaluation of onset wind velocity for 2-D coupled galloping oscillations of tower buildings. J. Wind Eng. Ind. Aerodyn. 50, 329–340 (1993)

    Article  Google Scholar 

  18. Luongo A., Zulli D.: Parametric, external and self-excitation of a tower under turbulent wind flow. J. Sound Vib. 330, 3057–3069 (2011)

    Article  Google Scholar 

  19. Madeo A., Djeran-Maigre I., Rosi G., Silvani C.: The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection. Contin. Mech. Thermodyn. 25(2–4), 173–196 (2013)

    Article  MathSciNet  Google Scholar 

  20. Luongo A., Piccardo G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288, 1027–1047 (2005)

    Article  Google Scholar 

  21. Païdoussis M.P., Price S.J., de Langre E.: Fluid–Structure Interactions—Cross-Flow-Induced Instabilities. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  22. dell’Isola F., Rosa L., Woźniak C.: Dynamics of solids with micro periodic nonconnected fluid inclusions. Arch. Appl. Mech. 67, 215–228 (1997)

    MATH  Google Scholar 

  23. dell’Isola F., Rosa L., Woźniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127(1–4), 165–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Steigmann D., Faulkner G.M.: Variational theory for spatial rods. J. Elast. 33(1), 1–26 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Alibert J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in N th gradient continua: approach “à la D’Alembert”. Z. Angew. Math. Phys. ZAMP 63(6), 1119–1141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids (MMS), first published on February 2, 2014 as doi:10.1177/1081286513509811 (2014)

  28. Bîrsan M., Altenbach H., Sadowski T., Eremeyev V.A., Pietras D.: Deformation analysis of functionally graded beams by the direct approach. Compos. Part B Eng. 43(3), 1315–1328 (2012)

    Article  Google Scholar 

  29. Piccardo, G., Pagnini, L.C., Tubino, F.: Some research perspectives in galloping phenomena: critical conditions and postcritical behavior. Contin. Mech. Thermodyn. doi:10.1007/s00161-014-0374-5 (2014)

  30. Luongo A., Zulli D., Piccardo G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87, 1003–1014 (2009)

    Article  Google Scholar 

  31. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  32. Nakamura Y., Mizota T.: Torsional flutter of rectangular prisms. J. Eng. Mech. Div. ASCE 101(EM2), 125–142 (1975)

    Google Scholar 

  33. Tamura T., Miyagi T.: The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes. J. Wind Eng. Ind. Aerodyn. 83, 135–145 (1999)

    Article  Google Scholar 

  34. Li Q.S., Fang J.P., Jeary A.P.: Evaluation of 2D coupled galloping oscillations of slender structures. Comput. Struct. 66(5), 513–523 (1998)

    Article  MATH  Google Scholar 

  35. Pagnini L.C.: Model reliability and propagation of frequency and damping uncertainties in the dynamic along-wind response of structures. J. Wind Eng. Ind. Aerodyn. 59(2–3), 211–231 (1996)

    Article  Google Scholar 

  36. Pagnini L.: Reliability analysis of wind-excited structures. J. Wind Eng. Ind. Aerodyn. 98(1), 1–9 (2010)

    Article  MathSciNet  Google Scholar 

  37. Roveri N., Carcaterra A., Akay A.: Energy equipartition and frequency distribution in complex attachments. J. Acoust. Soc. Am. 126(1), 122–128 (2009)

    Article  Google Scholar 

  38. Luongo A., Piccardo G.: A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance. J. Vib. Control 14(2), 135–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. dell’Isola F., Rosa L.: Perturbation methods in torsion of thin hollow Saint-Venant cylinders. Mech. Res. Commun. 23(2), 145–150 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. dell’Isola F., Ruta G.: Perturbation series for shear stress in flexure of Saint-Venant cylinders with Bredt-like sections. Mech. Res. Commun. 23(5), 557–564 (1996)

    Article  MATH  Google Scholar 

  41. Piccardo G., Carassale L., Freda A.: Critical conditions of galloping for inclined square cylinders. J. Wind Eng. Ind. Aerodyn. 99(6–7), 748–756 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Piccardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccardo, G., Tubino, F. & Luongo, A. A shear–shear torsional beam model for nonlinear aeroelastic analysis of tower buildings. Z. Angew. Math. Phys. 66, 1895–1913 (2015). https://doi.org/10.1007/s00033-014-0456-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0456-z

Mathematics Subject Classification

Keywords

Navigation