Waves on a vortex filament: exact solutions of dynamical equations


In this paper, we take into account the dynamical equations of a vortex filament in superfluid helium at finite temperature (1 K < T < 2.17 K) and at very low temperature, which is called Biot–Savart law. The last equation is also valid for a vortex tube in a frictionless, unbounded, and incompressible fluid. Both the equations are approximated by the Local Induction Approximation (LIA) and Fukumoto’s approximation. The obtained equations are then considered in the extrinsic frame of reference, where exact solutions (Kelvin waves) are shown. These waves are then compared one to each other in terms of their dispersion relations in the frictionless case. The same equations are then investigated for a quantized vortex line in superfluid helium at higher temperature, where friction terms are needed for a full description of the motion.

This is a preview of subscription content, access via your institution.


  1. 1

    Landau L.D., Lifshitz E.M.: Fluid Mechanics. Hill, Oxford (1987)

    MATH  Google Scholar 

  2. 2

    Saffman P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  3. 3

    Milne-Thomson L.M.: Theoretical Hydrodynamics. MacMillan&co LTD, London (1962)

    Google Scholar 

  4. 4

    Donnelly R.J.: Quantized Vortices in Helium II. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  5. 5

    Barenghi C.F., Donnelly R.J., Vinen W.F.: Quantized Vortex Dynamics and Superfluid Turbulence. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  6. 6

    Nemirovskii S.J.: Quantum turbulence: theoretical and numerical problems. Phys. Rep. 524, 85 (2013)

    Article  MathSciNet  Google Scholar 

  7. 7

    Sciacca, M., Jou, D., Mongioví, M.S.: Effective thermal conductivity of helium II: from Landau to Gorter-Mellink regimes, Z. Angew. Math. Phys.

  8. 8

    Sciacca, M., Sellitto, A., Jou, D.: Transition to ballistic regime for heat transport in helium II. Phys. Lett. A (2014). doi:10.1016/j.physleta.2014.06.041

  9. 9

    Paoletti M.S., Fisher M.E., Lathrop D.P.: Reconnection dynamics for quantized vortices. Phys. D 239, 1367–1377 (2010)

    Article  MATH  Google Scholar 

  10. 10

    Bai W., Zeng R., Zhang Y.: Quantized vortex stability and interaction in the nonlinear wave equation. Phys. D 237, 2391–2410 (2008)

    Article  MathSciNet  Google Scholar 

  11. 11

    Thomson W.: Vibrations of a columnar vortex. Phil. Mag. 10, 155–168 (1880)

    Article  MATH  Google Scholar 

  12. 12

    Agrawal G.P.: Nonlinear Fiber Optics. Academic Press, New York (2001)

    Google Scholar 

  13. 13

    L’Vov V.S., Nazarenko S.V., Rudenko O.: Bottleneck crossover between classical and quantum superfluid turbulence. Phys. Rev. B 76, 024520 (2007)

    Article  Google Scholar 

  14. 14

    Nemirovskii S.J.: Diffusion of inhomogeneous vortex tangle and decay of superfluid turbulence. Phys. Rev. B 81, 064512 (2010)

    Article  Google Scholar 

  15. 15

    Kondaurova L., Nemirovskii S.J.: Numerical study of decay of vortex tangles in superfluid helium at zero temperature. Phys. Rev. B 86, 134506 (2012)

    Article  Google Scholar 

  16. 16

    Schwarz K.W.: Three-dimensional vortex dynamics in superfluid 4He, I. Line-line and line boundary interactions. Phys. Rev. B 31, 5782–5804 (1985)

    Article  Google Scholar 

  17. 17

    Schwarz K.W.: Three-dimensional vortex dynamics in superfluid 4He. Phys. Rev. B 38, 2398–2417 (1988)

    Article  Google Scholar 

  18. 18

    Da Rios L.S.: Sul moto di un liquido indefinito con un filetto vorticoso di forma qualunque. Rend. Circ. Mat. Palermo 22, 117 (1906)

    Article  MATH  Google Scholar 

  19. 19

    Betchov R.: On the curvature and torsion of an isolated vortex filament. J. Fluid Mech. 22, 471–479 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20

    Fukumoto Y.: Three-dimensional motion of a vortex filament and its relation to the localized induction hierarchy. Eur. Phys. J. B 29, 167–171 (2002)

    Article  Google Scholar 

  21. 21

    Adachi H., Fujiyama S., Tsubota M.: Steady state of counterflow quantum turbulence: vortex filament simulation with the full Biot Savart law. Phys. Rev. B 81, 104511 (2010)

    Article  Google Scholar 

  22. 22

    Sonin E.B.: Symmetry of Kelvin-wave dynamics and the Kelvin-wave cascade in the T = 0 superfluid turbulence. Phys. Rev. B 85, 104516 (2012)

    Article  Google Scholar 

  23. 23

    Sonin E.B.: Dynamics of helical vortices and helical-vortex rings. Europhys. Lett. 97, 46002 (2012)

    Article  Google Scholar 

  24. 24

    Lebedev V.V., L’vov V.S.: Symmetries and interaction coefficients of Kelvin waves. J. Low Temp. Phys. 161, 548 (2010)

    Article  Google Scholar 

  25. 25

    Kozik E., Svistunov B.: Kolmogorov and Kelvin-wave cascades of superfluid turbulence at T=0: what lies between. Phys. Rev. B 77, 060502 (2008)

    Article  Google Scholar 

  26. 26

    Ricca R.L.: Rediscovery of da Rios equations. Nature 352, 561 (1991)

    Article  Google Scholar 

  27. 27

    Ricca, R.L.: The contributions of Da Rios and Levi-Civita to asymptotic potential-theory and vortex filament dynamics. Fluid Dyn Res 5(18), 245 (1996)

  28. 28

    Shivamoggi B.K., van Heijst G.J.F.: Motion of a vortex filament in the local induction approximation: Reformulation of the Da Rios–Betchov equations in the extrinsic filament coordinate space. Phys. Lett. A. 374, 1742 (2010)

    Article  MATH  Google Scholar 

  29. 29

    Shivamoggi B.K.: Vortex motion in superfluid 4He: reformulation in the extrinsic vortex-filament coordinate space. Phys. Rev. B 84, 012506 (2011)

    Article  Google Scholar 

  30. 30

    Hasimoto H.: A soliton on a vortex filament. J. Fluid Mech. 51, 477–485 (1972)

    Article  MATH  Google Scholar 

  31. 31

    Barenghi C.F., Tsubota M., Mitani A., Araki T.: Transient growth of Kelvin waves on quantized vortices. J. Low Temp. Phys. 134(1/2), 489 (2004)

    Article  Google Scholar 

  32. 32

    Skrbek L., Gordeev A.V., Soukup F.: Decay of counterflow He II turbulence in a finite channel: Possibility of missing links between classical and quantum turbulence. Phys.Rev. E 67, 047302 (2003)

    Article  Google Scholar 

  33. 33

    Donnelly R. J., Barenghi C.F.: The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. Ref. Data. 27, 1217 (1998)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Michele Sciacca.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brugarino, T., Mongiovi, M.S. & Sciacca, M. Waves on a vortex filament: exact solutions of dynamical equations. Z. Angew. Math. Phys. 66, 1081–1094 (2015). https://doi.org/10.1007/s00033-014-0450-5

Download citation

Mathematics Subject Classification

  • 41A58
  • Series expansions
  • 35C07
  • Traveling wave solutions


  • Kelvin waves
  • Vortex filament
  • Superfluid helium