Skip to main content
Log in

Phase separation in quasi-incompressible fluids: Cahn–Hilliard model in the Cattaneo–Maxwell framework

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we propose a mathematical model of phase separation for a quasi-incompressible binary mixture where the spinodal decomposition is induced by an heat flux governed by the Cattaneo–Maxwell equation. As usual, the phase separation is considered in the framework of phase-field modeling so that the transition is described by an additional field, the mixture concentration c. The evolution of the mixture concentration is described by the Cahn–Hilliard equation, and in our model, it is coupled with the Navier–Stokes equation. Since thermal effect is included, the whole set of evolution equations is set up for the velocity, the mixture concentration, the temperature and the heat flux. The model is compatible with thermodynamics and a maximum theorem holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerman C.C., Guyer R.A.: Temperature pulses in dielectric solids. Ann. Phys. 50, 128–185 (1968)

    Article  Google Scholar 

  2. Alt H.W., Pawlow I.: A mathematical model of dynamics of non-isothermal phase separation. Phys. D 59, 389–416 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alt H.W., Pawlow I.: On the entropy principle of phase transition models with a conserved parameter. Adv. Math. Sci. Appl. 6, 291–376 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Andreeva N.S., Boikoa G.G., Bokova N.A.: Small-angle scattering and scattering of visible light by sodium–silicate glasses at phase separation. J. Non-Cryst. Solids 5, 41–54 (1970)

    Article  Google Scholar 

  5. Barrett J.W., Blowey J.W.: Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility. Math. Comput. 68, 487–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berti A., Berti V., Grandi D.: Well-posedness of an isothermal diffusive model for binary mixtures of incompressible fluids. Nonlinearity 24, 3143–3164 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berti A., Bochicchio I.: A mathematical model for phase separation: a generalized Cahn–Hilliard equation. Math. Methods Appl. Sci. 34, 1193–1201 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berti A., Giorgi C.: Phase-field modeling of transition and separation phenomena in continuum thermodynamics. AAPP Phys. Math. Nat. Sci. 91(S1), A3 (2013)

    MathSciNet  Google Scholar 

  9. Butler E.P., Thomas G.: Structure and properties of spinodally decomposed Cu–Ni–Fe alloys. Acta Metall. 18, 347–365 (1970)

    Article  Google Scholar 

  10. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28, 258 (1958)

    Article  Google Scholar 

  11. Cahn J.W., Elliott C.M., Novik-Cohen A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion of minus Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)

    Article  MATH  Google Scholar 

  12. Cahn J.C.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  13. Cahn J.C.: On spinodal decomposition in cubic crystals. Acta Metall. 10, 179–183 (1962)

    Article  Google Scholar 

  14. Cattaneo C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  Google Scholar 

  15. Chester M.: Second sound in solids. Phys. Rew. 131, 2013–2015 (1963)

    Article  Google Scholar 

  16. Coleman D.B., Fabrizio M., Owen D.R.: Thermodynamics and the constitutive relations for second sound in crystals. Thermodyn. Const. Equ. 228, 20–43 (1985). doi:10.1007/BFb0017953

    Article  MathSciNet  Google Scholar 

  17. Coleman D.B., Fabrizio M., Owen D.R.: On the thermodynamics of second sound in dielectric crystals. Arch. Rational Mech. Anal. 80, 135–158 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cook, H.: Brownian motion in spinodal decomposition. Acta Metall. 18, 297–306 (1970)

    Google Scholar 

  19. Christov C.I., Jordan P.M.: Heat conduction paradox involving second-sound propagation in moving media. Phys. Rev. Lett. 94, 154301 (2005)

    Article  Google Scholar 

  20. Fabrizio M., Giorgi C., Morro A.: Phase separation in quasi-incompressible Cahn–Hilliard fluids. Eur. J. Mech. B/Fluids 30, 281–287 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fabrizio M., Giorgi C., Morro A.: A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Phys. D 214, 144–156 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fabrizio M., Giorgi C., Morro A.: A continuum theory for first-order phase transitions based on the balance of structure order. Math. Methods Appl. Sci. 31, 627 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fabrizio M., Lazzari B., Nibbi R.: Thermodynamics of non-local materials: extra fluxes and internal powers. Continuum Mech. Therm. 23, 509 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fremond M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  25. Gal C.G., Grasselli M.: Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann. Inst.H. Poincaré Anal. Non Linéaire 27, 401–436 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gal C.G., Miranville A.: Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions. Nonlinear Anal. Real World Appl. 10, 1738–1766 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grasselli M., Petzeltová H., Schimperna G.: Asymptotic behavior of a nonisothermal viscous Cahn–Hilliard equation with inertial term. J. Differ. Equ. 239, 38–60 (2007)

    Article  MATH  Google Scholar 

  28. Gurtin M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D 92, 178–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hilliard, J.E.: In: Aronson H.I. (eds.) Phase Transformation. American Society for Metals, Metals Park, OH (1970)

  30. Morro A.: Phase-field models for fluid mixtures. Math. Comput. Model. 45, 1042–1052 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lowengrub J., Truskinovsky L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rundman K.B., Hilliard J.E.: Early stages of spinodal decomposition in an aluminum–zinc alloy. Acta Metall. 15, 1025–1033 (1967)

    Article  Google Scholar 

  33. Straughan, B.: Heat Waves, vol. 177, Appl. Math. Sci. Ser., Springer (2011)

  34. Tomozawa M., MacCrone R.K., Herman H.: Early-stage phase decomposition in vitreous Na 2 OSiO 2. J. Am. Ceram. Soc. 53, 62 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Bochicchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alessia, B., Bochicchio, I. & Fabrizio, M. Phase separation in quasi-incompressible fluids: Cahn–Hilliard model in the Cattaneo–Maxwell framework. Z. Angew. Math. Phys. 66, 135–147 (2015). https://doi.org/10.1007/s00033-013-0395-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0395-0

Mathematics Subject Classification (2010)

Keywords

Navigation