Zeitschrift für angewandte Mathematik und Physik

, Volume 65, Issue 6, pp 1233–1249 | Cite as

Stability to 1-D thermoelastic Timoshenko beam acting on shear force

  • Dilberto da S. Almeida JúniorEmail author
  • M. L. Santos
  • J. E. Muñoz Rivera


In this paper, we study the stabilization of a new coupling to thermoelastic Timoshenko beam. In particular, we consider a thermoelastic coupling on shear force. We prove that this dissipative system is exponentially stable if and only if the velocities of waves propagations are the same, as usually occurs in Timoshenko systems with few dissipations. On the contrary, we show that the system (1.7)–(1.10) with boundary conditions (1.12) is polynomially stable, that is, that the semigroup decay as \({1/\sqrt{t}}\). Additionally, we show that this rate of decay is optimal. For the system (1.7)–(1.10) with boundary conditions (1.11), we show that the semigroup decay as \({1/\sqrt[4]{t}}\).

Mathematics Subject Classification

35B40 35B35 


Linear thermo-elasticity Timoshenko systems Optimal decay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borichev A., Tomilov Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2), 455–478 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Brezis H.: Analyse Fonctionelle, Théorie et Applications. Masson, Paris (1992)Google Scholar
  3. 3.
    Prüss J.: On the spectrum of C 0-semigroups. Trans. AMS 284, 847–857 (1984)CrossRefzbMATHGoogle Scholar
  4. 4.
    Soufyane A.: Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Paris, Série I-Mathematique 328(8), 731–734 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Wehbe A., Youssef W.: Stabilization of the uniform Timoshenko beam by one locally distributed feedback. Appl. Anal. 88(7), 1067–1078 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Khodja F.A., Assia B., Muñoz Rivera J.E., Racke R.: Energy decay for Timoshenko systems of memory type. J. Differ. Eqs. 194(1), 82–115 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ammar-Khodja F., Kerbal S., Soufyane A.: Stabilization of the nonuniform Timoshenko beam. J. Math. Anal. Appl. 327(1), 525–538 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Guesmia A., Messaoudi S.A., Wehbe A.: Uniform decay in mildly damped Timoshenko systems with non-equal wave speed propagation. Dyn. Syst. Appl. 2012, 133–146 (2012)MathSciNetGoogle Scholar
  9. 9.
    Guesmia A., Messaoudi S.A., Soufyane A.: On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems. Elect. J. Diff. Eqs. 2012(193), 1–45 (2012)Google Scholar
  10. 10.
    Huang F.: Characteristic condition for exponential stability of linear dynamical systems in Hilbert space. Ann. Diff. Eqs. 1(1), 43–56 (1985)zbMATHGoogle Scholar
  11. 11.
    Fatori L.H., Muñoz Rivera J.E.: Rates of decay to weak thermoelastic Bresse system. IMA J. Appl. Math. 75(6), 881–904 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fernández Sare H.D., Muñoz Rivera J.E.: Exponential decay of Timoshenko systems with indefinite memory dissipation. Adv. Differ. Eqs. 13(7–8), 733–752 (2009)Google Scholar
  13. 13.
    Muñoz Rivera J.E., Quintanilha R.: On the time polynomial decay in elastic solilds with voids. JMAA 338, 1296–1309 (2008)zbMATHGoogle Scholar
  14. 14.
    Muñoz Rivera J.E., Fernández Sare H.D.: Stability of Timoshenko systems with past history. J. Math. Anal. Appl. 339(1), 482–502 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Muñoz Rivera J.E., Racke R.: Mildly dissipative nonlinear Timoshenko systems–global existence and exponential stability. J. Math. Anal. Appl. 276, 248–278 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Muñoz Rivera J.E., Racke R.: Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 341, 1068–1083 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gearhart L.: Spectral theory for contraction semigroups on Hilbert spaces. Trans. AMS 236, 385–394 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Grasselli M., Pata V., Prouse G.: Longtime behavior of a viscoelastic Timoshenko beam. Discret. Contin. Dyn. Syst. 10(1–2), 337–348 (2004)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  20. 20.
    Casas P.S., Quintanilha R.: Exponential stability in thermoelasticity with microtemperatures. IJES 43, 33–47 (2005)zbMATHGoogle Scholar
  21. 21.
    Messaoudi S.A., Soufyane A.: Boundary stabilization of solutions of a nonlinear system of Timoshenko Type. Nonlinear Anal. 67(7), 2107–2121 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Messaoudi S.A., Mustafa M.I.: A stability result in a memory-type Timoshenko system. Dyn. Syst. Appl. 18(3–4), 457–468 (2009)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Messaoudi S.A., Mustafa Muhammad I.: On the stabilization of the Timoshenko system by a weak nonlinear dissipation. Math. Meth. Appl. Sci. 32(4), 454–469 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Messaoudi S.A., Said-Houari B.: Energy decay in a Timoshenko-type system with history in thermoelasticity of type III. Adv. Differ. Eqs. 14(3–4), 375–400 (2009)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Messaoudi S.A., Pokojovy M., Said-Houari B.: Nonlinear damped timoshenko systems with second sound: global existence and exponential stability. Math. Methods Appl. Sci. 32, 505–534 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Dilberto da S. Almeida Júnior
    • 1
    Email author
  • M. L. Santos
    • 1
  • J. E. Muñoz Rivera
    • 2
  1. 1.Department of MathematicsFederal University of ParáBelémBrazil
  2. 2.National Laboratory for Scientific ComputationPetrópolisBrazil

Personalised recommendations