Skip to main content
Log in

Asymptotic stability of a pendulum with quadratic damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The equation considered in this paper is

$$x'' + h(t)\:x'|x'| + \omega^2\sin x = 0,$$

where h(t) is continuous and nonnegative for \({t \geq 0}\) and ω is a positive real number. This may be regarded as an equation of motion of an underwater pendulum. The damping force is proportional to the square of the velocity. The primary purpose is to establish necessary and sufficient conditions on the time-varying coefficient h(t) for the origin to be asymptotically stable. The phase plane analysis concerning the positive orbits of an equivalent planar system to the above-mentioned equation is used to obtain the main results. In addition, solutions of the system are compared with a particular solution of the first-order nonlinear differential equation

$$u' + h(t)u|u| + 1 = 0.$$

Some examples are also included to illustrate our results. Finally, the present results are extended to be applied to an equation with a nonnegative real-power damping force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed A.H., Tapley B.D.: Equivalence of the generalized Lie-Hori method and the method of averaging. Celestial Mech. 33, 1–20 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacciotti A., Rosier L.: Lyapunov Functions and Stability in Control Theory. 2nd edn. Springer, Berlin (2005)

    Book  Google Scholar 

  3. Bass D.W., Haddara M.R.: Nonlinear models of ship roll damping. Int. Shipbuild. Prog. 38, 51–71 (1991)

    Google Scholar 

  4. Berg M.: A three-dimensional airspring model with friction and orifice damping. Veh. Syst. Dyn. 33, 528–539 (1999)

    Google Scholar 

  5. Biringen S., Chow C.-Y.: An Introduction to Computational Fluid Mechanics by Example. Wiley, Hoboken (2011)

    Book  MATH  Google Scholar 

  6. Cardo A., Francescutto A., Nabergoj R.: On damping models in free and forced rolling motion. Ocean Eng. 9, 171–179 (1982)

    Article  Google Scholar 

  7. Citterio M., Talamo R.: Damped oscillators: a continuous model for velocity dependent drag. Comput. Math. Appl. 59, 352–359 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cvetićanin L.: Oscillator with strong quadratic damping force. Publ. Inst. Math. (Beograd) (N.S.) 85(99), 119–130 (2009)

    Article  MathSciNet  Google Scholar 

  9. Dalzell J.F.: A note on the form of ship roll damping. J. Ship Res. 22, 178–185 (1978)

    Google Scholar 

  10. Eng Y.H., Lau W.S, Low E., Seet G.L., Chin C.S.: Estimation of the hydrodynamic coefficients of an ROV using free decay pendulum motion. Eng. Lett. 16, 326–331 (2008)

    Google Scholar 

  11. Halanay A.: Differential Equations: Stability, Oscillations, Time Lags. Academic, New York–London (1996)

    Google Scholar 

  12. Hale, J. K.: Ordinary Differential Equations. Wiley-Interscience, New York–London–Sydney (1969)

  13. Hatvani, L.: A generalization of the Barbashin-Krasovskij theorems to the partial stability in nonautonomous systems. In: Farkas M. (ed.) Qualitative Theory of Differential Equations I, Colloq. Math. Soc. János Bolyai, vol. 30, pp. 381–409. North-Holland, Amsterdam–New York (1981)

  14. Hatvani L.: On the asymptotic stability for a two-dimensional linear nonautonomous differential system. Nonlinear Anal. 25, 991–1002 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hatvani L., Krisztin T., Totik V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differ. Equ. 119, 209–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hatvani L., Totik V.: Asymptotic stability of the equilibrium of the damped oscillator. Diff. Integral Eqns. 6, 835–848 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Klotter K.: Free oscillations of systems having quadratic damping and arbitrary restoring forces. J. Appl. Mech. 22, 493–499 (1955)

    MathSciNet  Google Scholar 

  18. Kovacic I., Rakaric Z.: Study of oscillators with a non-negative real-power restoring force and quadratic damping. Nonlinear Dyn. 64, 293–304 (2011)

    Article  MathSciNet  Google Scholar 

  19. Michel A.N., Hou L., Liu D.: Stability Dynamical Systems: Continuous, Discontinuous, and Discrete Systems. Birkhäuser, Boston–Basel–Berlin (2008)

    Google Scholar 

  20. Nelson R.A., Olsson M.G.: The pendulum–rich physics from a simple system. Am. J. Phys. 54, 112–121 (1986)

    Article  Google Scholar 

  21. Neves M.A.S., Pérez N.A., Valerio L.: Stability of small fishing vessels in longitudinal waves. Ocean Eng. 26, 1389–1419 (1999)

    Article  Google Scholar 

  22. Peirce B.O.: The damping of the oscillations of swinging bodies by the resistance of the air. Proc. Am. Acad. Arts Sci. 44, 63–88 (1908)

    Article  Google Scholar 

  23. Richardson P.D.: Free oscillations with damping proportional to the square of the velocity. Appl. Sci. Res. Sect. A 11, 397–400 (1963)

    MATH  Google Scholar 

  24. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Lyapunov’s Direct Method, Applied Mathematical Sciences, vol. 22. Springer, New York–Heidelberg–Berlin (1977)

  25. Shimozawa K., Tohtake T.: An air spring model with non-linear damping for vertical motion. Q. Rep. RTRI 49, 209–214 (2008)

    Article  Google Scholar 

  26. Simmonds D.S.: The response of a simple pendulum with Newtonian damping. J. Sound Vibr. 84, 453–461 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smith R.A.: Asymptotic stability of x′′ +  a(t)x′ +  x =  0. Q. J. Math. Oxford (2) 12, 123–126 (1961)

    Article  MATH  Google Scholar 

  28. Sugie J.: Global asymptotic stability for damped half-linear oscillators. Nonlinear Anal. 74, 7151–7167 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sugie J.: Smith-type criterion for the asymptotic stability of a pendulum with time-dependent damping. Proc. Am. Math. Soc. 141, 2419–2427 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sugie J., Hata S.: Global asymptotic stability for half-linear differential systems with generalized almost periodic coefficients. Monatsh. Math. 166, 255–280 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sugie J., Hata S., Onitsuka M.: Global asymptotic stability for half-linear differential systems with periodic coefficients. J. Math. Anal. Appl. 371, 95–112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sugie J., Shimadu T., Yamasaki T.: Global asymptotic stability for oscillators with superlinear damping. J. Dyn. Differ. Equ. 24, 777–802 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sugie, J., Yamasaki, T.: Global dynamics of Froude-type oscillators with superlinear damping terms. Acta Appl. Math. (2013). doi:10.1007/s10440-013-9839-y

  34. Taylan M.: The effect of nonlinear damping and restoring in ship rolling. Ocean Eng. 27, 921–932 (2000)

    Article  Google Scholar 

  35. Wylie C.R. Jr: Questions, discussions, and notes: simple harmonic motion with quadratic damping. Am. Math. Mon. 47, 474–476 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yoshizawa, T.: Stability theory by Lyapunov’s second method. Math. Soc. Japan, Tokyo (1966)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitsuro Sugie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugie, J. Asymptotic stability of a pendulum with quadratic damping. Z. Angew. Math. Phys. 65, 865–884 (2014). https://doi.org/10.1007/s00033-013-0361-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0361-x

Mathematics Subject Classification (2010)

Keywords

Navigation