Thermodynamic forces in single crystals with dislocations


A simple model for the evolution of macroscopic dislocation regions in a single crystal is presented. This model relies on maximal dissipation principle within Kröner’s geometric description of the dislocated crystal. Mathematical methods and tools from shape optimization theory provide equilibrium relations at the dislocation front, similarly to previous work achieved on damage modelling (J Comput Phys 33(16):5010–5044, 2011). The deformation state variable is the incompatible strain as related to the dislocation density tensor by a relation involving the Ricci curvature of the crystal underlying elastic metric. The time evolution of the model variables follows from a novel interpretation of the Einstein–Hilbert flow in terms of dislocation microstructure energy. This flow is interpreted as the dissipation of non-conservative dislocations, due to the climb mechanism, modelled by an average effect of mesoscopic dislocations moving normal to their glide planes by adding or removing points defects. The model equations are a fourth-order tensor parabolic equation involving the operator “incompatibility,” here appearing as a tensorial counterpart of the scalar Laplacian. This work encompasses and generalizes results previously announced (C R Acad Sci Paris Ser I 349:923–927, 2011), with in addition a series of physical interpretations to give a meaning to the newly introduced concepts.

This is a preview of subscription content, log in to check access.


  1. 1

    Acharya A.: Driving forces and boundary conditions in continuum dislocation mechanics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2034), 1343–1363 (2013)

    Article  MathSciNet  Google Scholar 

  2. 2

    Acharya A., Chapman S.J.: Elementary observations on the averaging of dislocation mechanics: dislocation origin of aspects of anisotropic yield and plastic spin. Procedia IUTAM 3(0), 301–313 (2012)

    Article  Google Scholar 

  3. 3

    Allaire G.: Conception optimale de structures. Springer, Berlin (2007)

    Google Scholar 

  4. 4

    Allaire G., Jouve F., Van Goethem N.: Damage and fracture evolution in brittle materials by shape optimization methods. J. Comput. Phys. 33(16), 5010–5044 (2011)

    Article  Google Scholar 

  5. 5

    Ammari H., Kang H.: Reconstruction of small inhomogeneities from boundary measurements. Lecture notes on mathematics. Springer, Berlin (2004)

    Google Scholar 

  6. 6

    Amstutz S., Takahashi T., Vexler B.: Topological sensitivity analysis for time-dependent problems. ESAIM: Control Optim. Calc Var. 14(3), 427–455 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7

    Berdichevsky V.: Continuum theory of dislocations revisited. Cont. Mech. Therm. 18(9), 195–222 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. 8

    Cahn J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  9. 9

    Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. 1. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  10. 10

    Cahn, R.W.: The discovery of polygonization. In: Dislocations and Properties of Real Materials, pp. 12–14, London, 1983. The Institute of Metals (1985)

  11. 11

    Cahn, R.W.: Chapter 3: Precursors of materials science. In: Cahn, R.W. (ed.) The Coming of Materials Science, vol. 5 of Pergamon Materials Series, pp. 57–156. Pergamon, New York (2001)

  12. 12

    Cea J.: Conception optimale ou identification de formes, calcul rapide de la dérivée de la fonction coût. Math. Model. Numer. Anal. 20(3), 371–402 (1986)

    MATH  MathSciNet  Google Scholar 

  13. 13

    Chow B., Lu P., Ni L.: Hamilton’s Ricci flow. Lectures in contemporary mathematics. AMS Science Press, Rhode Island, USA (2006)

    Google Scholar 

  14. 14

    Ciarlet P.G.: An introduction to differential geometry with applications to elasticity. Springer, Berlin (2006)

    Google Scholar 

  15. 15

    Colbois B., Savo A.: Large eigenvalues and concentration. Pac. J. Math. 249(2), 271–290 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. 16

    Dautray R., Lions J.-L.: Mathematical analysis and numerical methods for science and technology, vol. 5. Evolution problems I. Springer, Berlin (2000)

    Google Scholar 

  17. 17

    de Souza Neto E.A., Perić D., Owen D.R.J.: Computational methods for plasticity: theory and applications. Wiley, New York (2009)

    Google Scholar 

  18. 18

    Delfour, M.C., Zolésio, J.-P.: Shapes and geometries. Metrics, analysis, differential calculus, and optimization. 2nd edn. Advances in Design and Control 22. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011)

  19. 19

    Dubrovin B.A., Fomenko A.T., Novikov S.P.: Modern geometry—methods and applications, Part 1 (2nd edn). Cambridge studies in advanced mathematics. Springer, New-York (1992)

    Google Scholar 

  20. 20

    Dupret, F., Van den Bogaert, N.: Dynamic global simulation of the Czochralski process: I. Principles of the method; II. analysis of the growth of a Ge crystal. J. Cryst. Growth 171(1–2):65–76; 77–93 (1997)

    Google Scholar 

  21. 21

    Grant C.P.: Spinodal decomposition for the Cahn–Hilliard equation. Commun. Partial Differ. Equ. 18(3-4), 453–490 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. 22

    Grinfeld P.: Hadamard’s formula inside and out. J. Optim. Theory Appl. 145(9), 654–690 (2010)

    Article  MathSciNet  Google Scholar 

  23. 23

    Gurtin M.E.: Generalized Ginsburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D 92, 178–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. 24

    Gurtin M.E.: Configurational forces as basic concepts of continuum physics. Applied mathematical sciences, 137. Springer, Berlin (2000)

    Google Scholar 

  25. 25

    Hackl K., Fischer F.D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A Math. Phys. Eng. Sci. 464, 117–132 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. 26

    Henrot, A., Pierre, M.: Variation et optimisation de formes, vol. 48 of Mathématiques and Applications (Berlin) [Mathematics and Applications]. Springer, Berlin

  27. 27

    Hurle, D.T.J., Rudolph, P.: A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. In: Feigelson, R.S. (eds) 50 years Progress in Crystal Growth, a reprint collection, Elsevier, Amsterdam (2004)

  28. 28

    Kleinert, H.: Gauge fields in condensed matter. Vol. 1, World Scientific, Singapore (1989)

  29. 29

    Kleinert H.: New gauge symmetry in gravity and the evanescent role of torsion. Electron. J. Theor. Phys. 7(24), 28–298 (2010)

    Google Scholar 

  30. 30

    Kozono H., Yanagisawa T.: L r-variational inequality for vector fields and the Helmholtz–Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58(4), 1853–1920 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. 31

    Kröner, E.: Continuum theory of defects. In: Balian, R. (eds) Physiques des défauts, Les Houches session XXXV (Course 3), North-Holland, Amsterdam (1980)

  32. 32

    Kröner E.: The internal mechanical state of solids with defects. Int. J. Solids Struct. 29(14/15), 1849–1857 (1992)

    Article  MATH  Google Scholar 

  33. 33

    Lazar M., Hehl F.W.: Cartan’s spiral staircase in physics and, in particular, in the gauge theory of dislocations. Found. Phys. 40, 1298–1325 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. 34

    Mandel J.: Plasticité Classique et Viscoplasticité. Springer, Berlin (1973)

    Google Scholar 

  35. 35

    Maugin G.A.: The thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  36. 36

    Maugin G.A.: Geometry and thermomechanics of structural rearrangements: Ekkehart Kröner’s legacy. ZAMM 83(2), 75–84 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. 37

    Maugin G.A.: Material forces: concepts and applications. Appl. Mech. Rev. 48(3), 213–245 (2008)

    Google Scholar 

  38. 38

    Eliott C.M., Garcke H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404–423 (1996)

    Article  MathSciNet  Google Scholar 

  39. 39

    Müller G., Friedrich J.: Challenges in modeling of bulk crystal growth. J. Cryst. Growth 266(1-3), 1–19 (2004)

    Article  Google Scholar 

  40. 40

    Müller, G., Métois, J.J., Rudolph, P. (eds): Crystal growth-from fundamentals to technology. Elsevier, Amsterdam (2004)

    Google Scholar 

  41. 41

    Müller R.: Differential Harnack inequalities and the Ricci flow. European Mathematical Society Publishing House, Zurich, Switzerland (2006)

    Google Scholar 

  42. 42

    Murat F., Simon S.: Etudes de problèmes d’optimal design. Springer, Berlin (1976)

    Google Scholar 

  43. 43

    Zaiser, M.: Dislocation patterns in crystalline solids—phenomenology and modelling. In: Müller, G., Métois, J.J., Rudolph, P. (eds) Crystal growth-from fundamentals to technology, Elsevier, Amsterdam (2004)

  44. 44

    Neff P., Pauly D., Witsch K.-J.: Maxwell meets Korn: a new coercive inequality for tensor fields in \({\mathbb{R}^{N \times N}}\) with square-integrable exterior derivative. Math. Methods Appl. Sci. 35(1), 65–71 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. 45

    Onsager L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

  46. 46

    Pantz O.: Sensibilité de l’équation de la chaleur aux sauts de conductivité. C. R. Acad. Sci. Paris Ser. I 341, 333–337 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. 47

    Philibert, J.: Atom movements, diffusion and mass transport in solids. Monographies de physique. les éditions de physique, les Ulis, France (1988)

  48. 48

    Temam R.: Infinite dimensional dynamical systems in mechanics and physics. 2nd edn. Springer, New York (1997)

    Google Scholar 

  49. 49

    Vanden Bogaert N., Dupret F.: Modelling Bridgman and Czochralski growth. Handb. Crys. Growth 2(15), 875–1010 (1994)

    Google Scholar 

  50. 50

    Van Goethem, N.: The non-Riemannian dislocated crystal: a tribute to Ekkehart Kröner’s (1919–2000). J. Geom. Mech. 2(3), 303–320 (2010)

    Google Scholar 

  51. 51

    Van Goethem N.: Shape optimization for a time-dependent 4th-order equation in a dislocation model. C. R. Acad. Sci. Paris Ser. I 340 349, 923–927 (2011)

    Article  MATH  Google Scholar 

  52. 52

    Van Goethem N.: Strain in compatibility in single crystals: Kröner’s formula revisited. J. Elast. 103(1), 95–111 (2011)

    Article  MATH  Google Scholar 

  53. 53

    Van Goethem N.: A multiscale model for dislocations: from mesoscopic elasticity to macroscopic plasticity. ZAMM 92(7), 514–535 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  54. 54

    Van Goethem, N.: Fields of bounded deformation for mesoscopic dislocations. Math. Mech. Solids doi:10.1177/1081286513479196 (2013)

  55. 55

    Van Goethem N., de Potter A., Vanden Bogaert N., Dupret F.: Dynamic prediction of point defects in Czochralski silicon growth. An attempt to reconcile experimental defect diffusion coefficients with the V/G criterion. J. Phys. Chem. Solids 69, 320–324 (2008)

    Article  Google Scholar 

  56. 56

    Van Goethem, N., Dupret, F.: A distributional approach to the geometry of 2D dislocations at the continuum scale. Ann. Univ. Ferrara 58(2), 407–434 (2012)

    Google Scholar 

  57. 57

    Van Goethem N., Novotny A.: Crack nucleation sensitivity analysis. Math. Methods Appl. Sci. 33(16), 1978–1994 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nicolas Van Goethem.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Goethem, N. Thermodynamic forces in single crystals with dislocations. Z. Angew. Math. Phys. 65, 549–586 (2014).

Download citation

Mathematics Subject Classification (2000)

  • 53Z05
  • 74B99
  • 74N20
  • 74P20
  • 80A17
  • 49K20
  • 35Q74


  • Dislocations
  • Single crystals
  • Thermodynamic model
  • Einstein–Hilbert flow
  • Strain incompatibility
  • Shape optimization
  • Principle of maximal dissipation