Skip to main content
Log in

On existence and concentration of solutions for an elliptic problem with discontinuous nonlinearity via penalization method

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the present paper, we establish existence and concentration of positive solution for a class of elliptic problems in \({\mathbb{R}^{N}}\) whose nonlinearity is discontinuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann N., Szulkin A.: A concentration phenomenon for semilinear elliptic equations. Arch. Ration. Mech. Anal. 207(3), 1075–1089 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alves C.O.: Existence and multiplicity of solution for a class of quasilinear. Adv. Nonlinear Stud. 5, 73–86 (2005)

    MATH  MathSciNet  Google Scholar 

  3. Alves C.O., Bertone A.M.: A discontinuous problem involving the p- Laplacian. Electron. J. Differ. Equ. 42, 1–10 (2003)

    MathSciNet  Google Scholar 

  4. Alves C.O., Bertone A.M., Gonçalves J.V.: A variational approach to discontinuous problems with critical Sobolev exponents. J. Math. Anal. Appl. 265, 103–127 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alves C.O., Santos J.A., Gonçalves J.V.: On multiple solutions for multivalued elliptic equations under Navier boundary conditions. J. Conv. Anal. 03, 627–644 (2011)

    Google Scholar 

  6. Alves C.O., Figueiredo G.M.: Existence and multiplicity of positive solutions to a p-Laplacian equation in \({\mathbb{R}^{N}}\). Differ. Int. Equ. 19, 143–162 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Alves C.O., Figueiredo G.M.: Multiplicity of positive solutions for a quasilinear problem in \({\mathbb{R}^{N}}\) via penalization method. Adv. Nonlinear Stud. 5, 551–572 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Alves C.O., Nascimento R.G.: Nonlinear Perturbations of a Periodic Elliptic Problem with discontinuous nonlinearity in \({\mathbb{R}^{N}}\). Z. Angew Math. Phys. 63, 107–124 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Alves, C.O., Nascimento, R.G.: Existence and concentration of solutions for a class of elliptic problems with discontinuous nonlinearity in \({\mathbb{R}^{N}}\), To appear in Mathematica Scandinavica

  10. Alves C.O., Souto M.A.S.: On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Commun. Pure Appl. Anal. 3, 417–431 (2002)

    MathSciNet  Google Scholar 

  11. Ambrosetti A., Calahorrano M., Dobarro F.: Global branching for discontinuous problems. Commun. Math. 31, 213–222 (1990)

    MATH  MathSciNet  Google Scholar 

  12. Ambrosetti A., Turner R.: Some discontinuous variational problems. Differ. Integral Equ. 1(3), 341–349 (1988)

    MATH  MathSciNet  Google Scholar 

  13. Arcoya D., Calahorrano M.: Some discontinuous variational problems with a quasilinear operator. J. Math. Anal. 187, 1059–1072 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Averna D., Bonanno G.: A Mountain Pass Theorem for a Suitable Class of Functions. Rocky Mt. J. Math. 39, 707–727 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bartsch T., Pankov A., Wang Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1–21 (2001)

    Article  MathSciNet  Google Scholar 

  16. Badiale M.: Critical exponent and discontinuous nonlinearities. Differ. Int. Equ. 6, 1173–1185 (1993)

    MATH  MathSciNet  Google Scholar 

  17. Badiale M.: Some remarks on elliptic problems with discontinuous nonlinearities. Rend Sem. Mat. Univ. Politec. Torino 51, 331–342 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Badiale M., Dobarro F.: Some existence results for sublinear elliptic problems in \({\mathbb{R}^{N}}\). Funkcialaj Ekvacioj 39, 183–202 (1996)

    MATH  MathSciNet  Google Scholar 

  19. Badiale M., Tarantello G.: Existence and multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities. Nonlinear Anal. 29, 639–677 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bonanno G., Marano S.A.: On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl. Anal. Int. J. 89, 1–10 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chang K.C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. 80, 102–129 (1981)

    Article  MATH  Google Scholar 

  22. Chang K.C.: On the multiple solutions of the elliptic differential equations with discontinuous nonlinear terms. Sci. Sinica 21, 139–158 (1978)

    MATH  MathSciNet  Google Scholar 

  23. Chang, K.C.: The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure Appl. Math. 139–158 (1978)

  24. Chengfu W., Yisheng H.: Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights. Nonlinear Anal. 72(11), 4076–4081 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, NY (1983)

    MATH  Google Scholar 

  26. Clarke F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 265, 247–262 (1975)

    Article  Google Scholar 

  27. Costea, N., Morosanu, G.: A multiplicity result for an elliptic anisotropic differential inclusion involving variable exponents (to appear in Set-Valued and Variational Analysis)

  28. del Pino M., Felmer P.L.: Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MATH  Google Scholar 

  29. Dipierro S.: Concentration of solutions for a singularly perturbed mixed problem in non-smooth domains. J. Differ. Equ. 254(1), 3066 (2013)

    Article  MathSciNet  Google Scholar 

  30. Dinu, T.L.: Standing wave solutions of Schrödinger systems with discontinuous nonlinearity in Anisotropic Media. Int. J. Math. Math. Sci. 2006, 1–13, Article ID 73619 (2006)

  31. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equations with bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gazzola F., Radulescu V.: A nonsmooth critical point theory approach to some nonlinear elliptic equations in \({\mathbb{R}^{N}}\). Differ. Int. Equ. 13, 47–60 (2000)

    MATH  MathSciNet  Google Scholar 

  33. Ge B., Zhou Q.M., Xue X.P.: Infinitely many solutions for a differential inclusion problem in RN involving p(x)-Laplacian and oscillatory terms. Z. Angew Math. Phys. 63, 691–711 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Grossinho, M.R., Tersian, S.: An introduction to minimax theorems and their applications to differential equations. Kluwer Academic Publishers (2001)

  35. Iannizzotto A.: Three solutions for a partial differential inclusion via nonsmooth critical point theory. Set Valued Var. Anal. 19, 311–327 (2012)

    Article  MathSciNet  Google Scholar 

  36. Kristály A., Marzantowicz W., Varga C.: A non-smooth three critical points theorem with applications in differential inclusions. J. Glob. Optim. 46, 49–62 (2010)

    Article  MATH  Google Scholar 

  37. Lions P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part II. Ann. Inst. H. Poincare Anal. Non Lineéaire 1, 223–283 (1984)

    MATH  Google Scholar 

  38. Moser J.: A new proof de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    Article  MATH  Google Scholar 

  39. Oh Y.G.: Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials on the class (V) a . Commun. Partial Differ. Equ. 13, 1499–1519 (1988)

    Article  MATH  Google Scholar 

  40. Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Radulescu, V.: Mountain pass theorems for non-differentiable functions and applications. Proc. Japan. Acad. Ser. A. Math. Sci. 69(6), 193–198 (1993)

  42. Serra J.: Radial symmetry of solutions to diffusion equations with discontinuous nonlinearities. J. Differ. Equ. 254(4), 1893–1902 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Teng K.: Existence and multiplicity results for some elliptic systems with discontinuous nonlinearities. Nonlinear Anal. 75, 2975–2987 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Teng K.: Multiple solutions for semilinear resonant elliptic problems with discontinuous nonlinearities via nonsmooth double linking theorem. J. Glob. Optim. 46(1), 89110 (2010)

    Article  Google Scholar 

  45. Wang X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 53, 229–244 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovany M. Figueiredo.

Additional information

C. O. Alves was partially supported by INCT-MAT, PROCAD, CNPq/Brazil 620150/2008-4 and 303080/2009-4. Giovany M. Figueiredo: Supported by CNPq/PQ 300705/2008-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, C.O., Figueiredo, G.M. & Nascimento, R.G. On existence and concentration of solutions for an elliptic problem with discontinuous nonlinearity via penalization method. Z. Angew. Math. Phys. 65, 19–40 (2014). https://doi.org/10.1007/s00033-013-0316-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0316-2

Mathematics Subject Classification (2000)

Navigation