Skip to main content
Log in

Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

An Erratum to this article was published on 15 May 2013

Abstract

In this paper, we consider a dynamical model of population biology which is of the classical Fisher type, but the competition interaction between individuals is nonlocal. The existence, uniqueness, and stability of the steady state solution of the nonlocal problem on a bounded interval with homogeneous Dirichlet boundary conditions are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegretto, W., Nistri, P.: On a class of nonlocal problems with applications to mathematical biology. In: (Halifax, NS, 1997) Differential equations with applications to biology, pp. 1–14, Fields Inst. Commun. 21, Amer. Math. Soc., Providence, RI (1999)

  2. Apreutesei N., Ducrot A., Volpert V.: Travelling waves for integro-differential equations in population dynamics. Discrete Contin. Dyn. Syst. Ser. B 11, 541–561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bates, P.W.: On some nonlocal evolution equations arising in materials science. In nonlinear dynamics and evolution equations, pp. 13–52. Fields Inst. Commun. 48, Amer. Math. Soc., Providence, RI (2006)

  4. Bates, P., Chen, F.: Periodic traveling waves for a nonlocal integro-differential model. Electron. J. Differ. Equ. 26, 19 (1999)

    Google Scholar 

  5. Bates P.W., Chmaj A.: An integrodifferential model for phase transitions: stationary solutions in higher space dimensions. J. Statist. Phys. 95, 1119–1139 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bates P.W., Fife P.C., Ren X., Wang X.: Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bates P.W., Zhao G.: Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl. 332, 428–440 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davidson F.A., Dodds N.: Spectral properties of non-local differential operators. Appl. Anal. 85(6-7), 717–734 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davidson, F.A., Dodds, N.: Spectral properties of non-local uniformly-elliptic operators. Electron. J. Differ. Equ. 126, 15 (2006)

    Google Scholar 

  11. Dancer E.N.: On the structure of solutions of nonlinear eigenvalve problems. Indiana Univ. Math. J. 23, 1069–1076 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davidson F.A., Dodds N.: Existence of positive solutions due to non-local interactions in a class of nonlinear boundary value problems. Methods Appl. Anal. 14(1), 15–27 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Fisher R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  Google Scholar 

  14. Freitas P.: Bifurcation and stability of stationary solutions of nonlocal scalar reaction-diffusion equations. Jour. Dyna. Diff. Equa. 6, 613–628 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freitas P.: A nonlocal Sturm-Liouville eigenvalue problem. Proc. Royal Soc. Edin. 124A, 169–188 (1994)

    Article  MathSciNet  Google Scholar 

  16. Freitas, P.: Nonlocal reaction-diffusion equations. In: (Halifax, NS, 1997) Differential equations with applications to biology, pp. 187–204. Fields Inst. Commun. 21, Amer. Math. Soc., Providence, RI, 1999

  17. Fuentes M.A., Kuperman M.N., Kenkre V.M.: Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 91, 158104 (2003)

    Article  Google Scholar 

  18. Fuentes M.A., Kuperman M.N., Kenkre V.M.: Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects. J. Phys. Chem. B 108, 10505–10508 (2004)

    Article  Google Scholar 

  19. Furter J., Grinfeld M.: Local vs. nonlocal interactions in population dynamics. J. Math. Biol. 27, 65–80 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gidas B., Ni W.-M., Nirenberg L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gourley S.A.: Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41, 272–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gourley, S.A., Wu, J.: Delayed non-local diffusive systems in biological invasion and disease spread. In: Nonlinear dynamics and evolution equations, pp. 137–200. Fields Inst. Commun. 48 Amer. Math. Soc., Providence, RI (2006)

  23. Huang W.: Uniqueness of the bistable traveling wave for mutualist species. J. Dynam. Differ. Equ. 13(1), 147–183 (2001)

    Article  MATH  Google Scholar 

  24. Kenkre V.M.: Results from variants of the fisher equation in the study of epidemics and bacteria. Physica A 342, 242–248 (2004)

    Article  Google Scholar 

  25. Kenkre V.M., Kuperman M.N.: Applicability of the Fisher equation to bacterial population dynamics. Phys. Rev. E 67, 051921 (2003)

    Article  Google Scholar 

  26. Kolmogoroff A., Petrovsky I., Piscounoff N.: Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem. (French) Moscow Univ. Bull. Math. 1, 1–25 (1937)

    Google Scholar 

  27. Kot M.: Elements of mathematical ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  28. Liu P., Shi J.P., Wang Y.W.: Imperfect transcritical and pitchfork bifurcations. J. Func. Anal. 251(2), 573–600 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Murray, J.D.: Mathematical biology. Third edition. Interdisciplinary Applied Mathematics. 17, 18 I. An introduction. II. Spatial models and biomedical applications. Springer, New York (2003)

  30. Rabinowitz, P.H.: A nonlinear Sturm-Liouville theorem. Japan-United States seminar on ordinary differential and functional equations (Kyoto, 1971), pp. 182–192. Lecture notes in Math. 243, Springer, Berlin (1971)

  31. Rabinowitz P.H.: Some global results for nonlinear eigenvalue problems. J. Func. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi J.: Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models. Front. Math. in China 4, 407–424 (2009)

    Article  MATH  Google Scholar 

  33. Shi J., Wang X.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246(7), 2788–2812 (2009)

    Article  MATH  Google Scholar 

  34. So J., Wu J., Zou X.: A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, 1841–1853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Shi.

Additional information

Partially supported by NSFC Grant 11071051, and Longjiang Scholar grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Shi, J. & Wang, Y. Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation. Z. Angew. Math. Phys. 64, 1267–1278 (2013). https://doi.org/10.1007/s00033-012-0286-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0286-9

Mathematics subject classification (2010)

Keywords

Navigation