Skip to main content
Log in

Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A continuum evolutionary model for micromagnetics is presented that, beside the standard magnetic balance laws, includes thermomagnetic coupling. To allow conceptually efficient computer implementation, inspired by relaxation method of static minimization problems, our model is mesoscopic in the sense that possible fine spatial oscillations of the magnetization are modeled by means of Young measures. Existence of weak solutions is proved by backward Euler time discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baňas L., Prohl A., Slodička M.: Modeling of thermally assisted magnetodynamics. SIAM J. Num. Anal. 47, 551–574 (2008)

    Google Scholar 

  2. Bergqvist A.: Magnetic vector hysteresis model with dry friction-like pinning. Phys. B 233, 342–347 (1997)

    Article  Google Scholar 

  3. Boccardo L., Dall’aglio A., Gallouët T., Orsina L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boccardo L., Gallouët T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown W.F. Jr: Magnetostatic Principles in Ferromagnetism. Springer, New York (1966)

    Google Scholar 

  6. Carstensen C., Prohl A.: Numerical analysis of relaxed micromagnetics by penalised finite elements. Numer. Math. 90, 65–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choksi R., Kohn R.V.: Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math. 55, 259–289 (1998)

    Article  MathSciNet  Google Scholar 

  8. Dal Maso G., Francfort G.A., Toader R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. DeSimone A.: Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125, 99–143 (1993)

    Article  MathSciNet  Google Scholar 

  10. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of the Second Order, 2nd ed. Springer, New York (1983)

    Book  Google Scholar 

  11. Hahn H. Über Anänherung an Lebesguesche Integrale durch Riemannsche Summen. Sitzungber. Math. Phys. Kl. K. Akad. Wiss. Wien 123, 713–743 (1914)

    MATH  Google Scholar 

  12. Halphen B., Nguyen Q.S.: Sur les materiaux standards généralisés. J. Mécanique 14, 39–63 (1975)

    MATH  Google Scholar 

  13. Hubert A., Schäfer R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (1998)

    Google Scholar 

  14. James R.D., Kinderlehrer D.: Frustration in ferromagnetic materials. Continuum. Mech. Thermodyn. 2, 215–239 (1990)

    Article  MathSciNet  Google Scholar 

  15. James R.D., Müller S.: Internal variables and fine scale oscillations in micromagnetics. Continuum. Mech. Thermodyn. 6, 291–336 (1994)

    Article  MATH  Google Scholar 

  16. Kružík M., Prohl A.: Young measure approximation in micromagnetics. Numer. Math. 90, 291–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kružík M., Prohl A.: Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev. 48, 439–483 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kružík M., Roubíček T.: Specimen shape influence on hysteretic response of bulk ferromagnets. J. Magn. Magn. Mater. 256, 158–167 (2003)

    Article  Google Scholar 

  19. Kružík M., Roubíček T.: Interactions between demagnetizing field and minor-loop development in bulk ferromagnets. J. Magn. Magn. Mater. 277, 192–200 (2004)

    Article  Google Scholar 

  20. Landau L.D., Lifshitz E.M.: On theory of the dispersion of magnetic permeability of ferromagnetic bodies. Physik Z. Sowjetunion 8, 153–169 (1935)

    MATH  Google Scholar 

  21. Landau L.D., Lifshitz E.M.: Course of Theoretical Physics, Vol. 8. Pergamon Press, Oxford (1960)

    Google Scholar 

  22. Luskin, M., Ma, L.: Numerical optimization of the micromagnetics energy. In: Proceedings of the Session on “Mathematics in Smart Materials”, SPIE, 1919, pp. 19–29 (1993)

  23. Mielke A.: Evolution of rate-independent systems. In: Dafermos, C., Feireisl, E. (eds) Handbook of Differential Equations: Evolutionary Differential Equations, pp. 461–559. Elsevier, Amsterdam (2005)

    Google Scholar 

  24. Mielke A., Roubíček T.: Rate-independent model of inelastic behaviour of shape-memory alloys. Multiscale Model. Simul. 1, 571–597 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mielke A., Roubíček T., Stefanelli U.: Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. 31, 387–416 (2008)

    Article  MATH  Google Scholar 

  26. Mielke A., Theil F., Levitas V.I.: Mathematical formulation of quasistatic phase transformations with friction using an extremum principle. Arch. Ration. Mech. Anal. 162, 137–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nečas J., Roubíček T.: Buoyancy-driven viscous flow with L 1-data. Nonlinear Anal. 46, 737–755 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pedregal P.: Relaxation in ferromagnetism: the rigid case. J. Nonlinear Sci. 4, 105–125 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pedregal P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  30. Pedregal P., Yan B.: A duality method for micromagnetics. SIAM J. Math. Anal. 41, 2431–2452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Podio-Guidugli P., Roubíček T., Tomassetti G.: A thermodynamically-consistent theory of the ferro/paramagnetic transition. Arch. Ration. Mech. Anal. 198, 1057–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rogers R.C.: A nonlocal model for the exchange energy in ferromagnetic materials. J. Int. Eq. Appl. 3, 85–127 (1991)

    Article  MATH  Google Scholar 

  33. Roubíček T.: Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin (1997)

    Book  MATH  Google Scholar 

  34. Roubíček T.: Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal. 40, 256–297 (2010)

    Article  Google Scholar 

  35. Roubíček T., Kružík M.: Microstructure evolution model in micromagnetics. Z. Angew. Math. Phys. 55, 159–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Roubíček T., Kružík M.: Mesoscopic model for ferromagnets with isotropic hardening. Z. Angew. Math. Phys. 56, 107–135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Roubíček T., Tomassetti G.: Ferromagnets with eddy currents and pinning effects: their thermodynamics and analysis. Math. Models Meth. Appl. Sci. (M3AS) 21, 29–55 (2011)

    Article  MATH  Google Scholar 

  38. Tartar L.: Beyond Young measure. Meccanica 30, 505–526 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Visintin A.: Modified Landau-Lifshitz equation for ferromagnetism. Phys. B 233, 365–369 (1997)

    Article  MathSciNet  Google Scholar 

  40. Visintin, A.: On some models of ferromagnetism. In: Kenmochi, N. (ed.) Free Boundary Problems I, Chiba, 1999. Gakuto International Series in Mathematical Science and Applications, Vol. 13, pp. 411–428 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Benešová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benešová, B., Kružík, M. & Roubíček, T. Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition. Z. Angew. Math. Phys. 64, 1–28 (2013). https://doi.org/10.1007/s00033-012-0236-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0236-6

Mathematics Subject Classification

Keywords

Navigation