Skip to main content
Log in

Global existence of strong solutions of Navier–Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider strong solutions to the initial boundary value problems for the isentropic compressible Navier–Stokes equations in one dimension:

$$\rho\left\{\begin{array}{lll} t+(\rho u)_x=0\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\, {\rm in}\,(0,T)\times(0,1)\\ (\rho u )_t+(\rho u^2)_x+\rho \Phi_x-(\mu( \rho )u_x)_x+P_x=0\quad\quad {\rm in}\,(0,T)\times(0,1) \\\left(\left(\frac{\delta(\Phi_x)^2\,+\,1}{(\Phi_x)^2\,+\,\delta}\right)^{\frac{2-p}{2}}\Phi_x\right)_x=4\pi g(\rho-\frac{1}{|\Omega|}\int\nolimits_\Omega \rho dx\,\,\,\, )\quad\,\, {\rm in}\,(0,T)\times(0,1)\end{array}\right.$$

Here, the Φ is a non-Newtonian potential and strong solutions of the problem and obtains the uniqueness under the compatibility condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lions, P.L.: Mathematical Topics in Fluids Mechanics, vol. 2. Oxford Lecture Series in Mathematics and its Applications, vol. 10. Clarendon Press, Oxford (1998)

  2. Feireisl E., Novotný A., Petzeltová H.: On the existence of globally defined weak solution to the Navier–Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kim, H.: Global existence of strong solutions of the Navier–Stokes equations for one-dimensional isentropic compressible fluids. Available at: http://com2mac.postech.ac.kr/papers/2001/01-38.pdf

  4. Grad H.: Asymptotic theory of the Boltzmann equation II. In: Laurmann, J. (ed.) Rarefied Gas Dynamics, vol. 1, pp. 26–59. Academic Press, New York (1963)

    Google Scholar 

  5. Liu T.P., Xin Z., Yang T.: Vacuum states of compressible flow. Discrete Contin. Dyn. Syst. 4, 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Wen H., Yao L.: Global existence of strong solutions of the Navier–Stokes equations for isentropic compressible fluids with density-dependent viscosity. J. Math. Anal. Appl. 349, 503–515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kobayashi, T., Suzuki, T.: Weak solutions to the Navier–Stokes–Poisson equation, preprint

  8. Yin J.P., Tan Z.: Global existence of strong solutions of Navier–Stokes–Poisson equations for one-dimensional isentropic compressible fluids. Chin. Ann. Math. 29B(4), 441–458 (2008)

    Article  MathSciNet  Google Scholar 

  9. Lions J.L.: Quelques Méthodes de Résolution des Problemes aux Limites Nonlinéalires. Bunod, Paries (1969)

    Google Scholar 

  10. Xie H.: Blow-up of smooth solutions to the Navier–Stokes–Poisson equations. Math. Methods Appl. Sci. 34(2), 242–248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang G., Li H.-L., Zhu C.: Optimal decay rate of the non-isentropic compressible Navier–Stokes–Poisson system in \({\mathbb{R}^3}\) . J. Differ. Equ. 250(2), 866–891 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hsiao H., Li H.: Compressible Navier–Stokes–Poisson equations. Acta Math. Sci. Ser. B Engl. Ed. 30(6), 1937–1948 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Chae D.: On the nonexistence of global weak solutions to the Navier–Stokes–Poisson equations in \({\mathbb{R}^N}\) . Commun. Partial Differ. Equ. 35(3), 535–557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li H.-L., Matsumura A., Zhang G.: Optimal decay rate of the compressible Navier–Stokes–Poisson system in \({\mathbb{R}^3}\) . Arch. Ration. Mech. Anal. 196(2), 681–713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang W., Wu Z.: Pointwise estimates of solution for the Navier–Stokes–Poisson equations in multi-dimensions. J. Differ. Equ. 248(7), 1617–1636 (2010)

    Article  MATH  Google Scholar 

  16. Li H.-L., Yang T., Zou C.: Time asymptotic behavior of the bipolar Navier–Stokes–Poisson system. Acta Math. Sci. Ser. B Engl. Ed. 29(6), 1721–1736 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Jiang F., Tan Z., Yan Q.: Asymptotic compactness of global trajectories generated by the Navier–Stokes–Poisson equations of a compressible fluid. NoDEA Nonlinear Differ. Equ. Appl. 16(3), 355–380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yin J., Tan Z.: Local existence of the strong solutions for the full Navier–Stokes–Poisson equations. Nonlinear Anal. 71(7–8), 2397–2415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hao C., Li H.-L.: Global existence for compressible Navier–Stokes–Poisson equations in three and higher dimensions. J. Differ. Equ. 246(12), 4791–4812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ding, S., Wen, H., Yao, L., Zhu, C.: Global solutions to one-dimensional compressible Navier–Stokes–Poisson equations with density-dependent viscosity. J. Math. Phys. 50(2), 023101, p. 17 (2009)

    Google Scholar 

  21. Zhang T., Fang D.: Global behavior of spherically symmetric Navier–Stokes–Poisson system with degenerate viscosity coefficients. Arch. Ration. Mech. Anal. 191(2), 195–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tan, Z., Wang, Y.: Propagation of density-oscillations in solutions to the compressible Navier–Stokes–Poisson system. Chin. Ann. Math. Ser. B 29(5), 501–520, 76M50 (35Q35 76N10) PDF Clipboard Journal Article (2008)

    Google Scholar 

  23. Zhang Y., Tan Z.: On the existence of solutions to the Navier–Stokes–Poisson equations of a two-dimensional compressible flow. Math. Methods Appl. Sci. 30(3), 305–329 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang S., Jiang S.: The convergence of the Navier–Stokes–Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 31(4–6), 571–591 (2006)

    Article  MATH  Google Scholar 

  25. Donatelli D.: Local and global existence for the coupled Navier–Stokes–Poisson problem. Q. Appl. Math. 61(2), 345–361 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Yuan, H., Qiao, J. et al. Global existence of strong solutions of Navier–Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids. Z. Angew. Math. Phys. 63, 865–878 (2012). https://doi.org/10.1007/s00033-012-0202-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0202-3

Mathematics Subject Classification

Keywords

Navigation