Skip to main content
Log in

Two isoperimetric inequalities for the Sobolev constant

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this note, we prove two isoperimetric inequalities for the sharp constant in the Sobolev embedding and its associated extremal function. The first inequality is a variation on the classical Schwarz Lemma from complex analysis, similar to recent inequalities of Burckel, Marshall, Minda, Poggi-Corradini, and Ransford, while the second generalizes an isoperimetric inequality for the first eigenfunction of the Laplacian due to Payne and Rayner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvino A., Ferone V., Trombetti G.: On the properties of some nonlinear eigenvalues. SIAM J. Math. Anal. 29, 437–451 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. van den Berg, M.: Estimates for the torsion function and Sobolev constants. Potential Analysis (to appear)

  3. Betsakos D.: Geometric versions of Schwarz’s lemma for quasiregular mapings. Proc. Amer. Math. Soc. 139, 1397–1407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burckel R.B., Marshall D.E., Minda D., Poggi-Corradini P., Ransford T.J.: Area, capacity and diameter versions of Schwarz’s lemma. Conform. Geom. Dyn. 12, 133–152 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carroll, T., Ratzkin, J.: Isoperimetric inequalities and variations on Schwarz’s lemma. ArXiv e-prints, (2010)

  6. Carroll T., Ratzkin J.: Interpolating between torsional rigidity and principal frequency. J. Math. Anal. Appl. 379, 818–826 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiti G.: A reverse H ölder inequality for the eigenfunctions of linear second order elliptic operators. Z. Angew. Math. Phys. 33, 143–148 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Dai, Q., He, R., Hu, H.: Isoperimetric Inequalities and Sharp Estimate for Positive Solution of Sublinear Elliptic Equations. ArXiv e-prints (2010)

  9. Druet, O., Hebey, E.: The AB program in geometric analysis: sharp Sobolev inequalities and related problems. Mem. Amer. Math. Soc. 160 (2002)

  10. Hayman, W.K., Kennedy, P.B.: Subharmonic functions. Vol. I. Academic Press, London, London Mathematical Society Monographs, No. 9 (1976)

  11. Kohler-Jobin M.-Th.: Sur la première fonction propre d’une membrane: une extension à N dimensions de l’inégalité isopérimétrique de Payne-Rayner. Z. Angew. Math. Phys. 28, 1137–1140 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kohler-Jobin M.-Th.: Isoperimetric monotonicity and isoperimetric inequalities of Payne-Rayner type for the first eigenfunction of the Helmholtz problem. Z. Angew. Math. Phys. 32, 625–646 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laugesen R., Morpurgo C.: Extremals for eigenvalues of Laplacians under conformal mapping. J. Funct. Anal. 155, 64–108 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li P., Schoen R., Yau S.-T.: On the isoperimetric inequality for minimal surfaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11(4), 237–244 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Mossino J.: A generalization of the Payne-Rayner isoperimetric inequality. Boll. Un. Mat. Ital. A 2(6), 335–342 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Payne L.E., Rayner M.E.: An isoperimetric inequality for the first eigenfunction in the fixed membrane problem. Z. Angew. Math. Phys. 23, 13–15 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Payne L.E., Rayner M.E.: Some isoperimetric norm bounds for solutions of the Helmholtz equation. Z. Angew. Math. Phys. 24, 105–110 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies no. 27 Princeton University Press (1951)

  19. Sperb R.: Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran. Z. Angew. Math. Phys. 23, 231–244 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Takahashi F., Uegaki A.: A Payne-Rayner type inequality for the Robin problem on arbitrary minimal surface in \({\mathbb{R}^ N}\). Results Math. 59, 107–114 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang Q., Xia C.: Isoperimetric bounds for the first eigenvalue of the Laplacian. Z. Angew. Math. Phys. 61, 171–175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Carroll.

Additional information

T.C. is partially supported by the ESF Network ‘Harmonic and Complex Analysis and Applications’ (HCAA). J.R. is partially supported by the University of Cape Town Research Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, T., Ratzkin, J. Two isoperimetric inequalities for the Sobolev constant. Z. Angew. Math. Phys. 63, 855–863 (2012). https://doi.org/10.1007/s00033-012-0198-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0198-8

Mathematics Subject Classification (2010)

Keywords

Navigation