Skip to main content
Log in

How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Navier–Cauchy format for Continuum Mechanics is based on the concept of contact interaction between sub-bodies of a given continuous body. In this paper, it is shown how—by means of the Principle of Virtual Powers—it is possible to generalize Cauchy representation formulas for contact interactions to the case of Nth gradient continua, that is, continua in which the deformation energy depends on the deformation Green–Saint-Venant tensor and all its N − 1 order gradients. In particular, in this paper, the explicit representation formulas to be used in Nth gradient continua to determine contact interactions as functions of the shape of Cauchy cuts are derived. It is therefore shown that (i) these interactions must include edge (i.e., concentrated on curves) and wedge (i.e., concentrated on points) interactions, and (ii) these interactions cannot reduce simply to forces: indeed, the concept of K-forces (generalizing similar concepts introduced by Rivlin, Mindlin, Green, and Germain) is fundamental and unavoidable in the theory of Nth gradient continua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham R., Marsden J.E., Ratiu T.: Manifolds, Tensor Analysis, and Applications. Appl. Math Sci. 75. Springer, Berlin (1988)

    Book  Google Scholar 

  2. Alibert J.-J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreaus U., Baragatti P.: Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J. Sound Vib. 330(4), 721–742 (2011)

    Article  Google Scholar 

  4. Andreaus U., Placidi L., Rega G.: Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2603–2616 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreaus U., Baragatti P.: Fatigue crack growth, free vibrations and breathing crack detection of aluminium alloy and steel beams. J. Strain Anal. Eng. Des. 44(7), 595–608 (2009)

    Article  Google Scholar 

  6. Andreaus U., Placidi L., Rega G.: Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system. Proc. I Mech. E Part C J. Mech. Eng. Sci. 225(10), 2444–2456 (2011)

    Article  Google Scholar 

  7. Arnold V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1979)

    Google Scholar 

  8. Banfi C., Marzocchi A., Musesti A.: On the principle of Virtual Powers in continuum mechanics. Ricerche di Matematica 55, 299–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bardenhagen S., Triantafyllidis N.: Derivation of higher order gradient continuum theories in 2,3-D nonlinear elasticity from periodic lattice models. J. Mech. Phys. Solids 42(1), 111–139 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benvenuto E.: La scienza delle costruzioni e il suo sviluppo storico. Sansoni, Firenze (1981)

    Google Scholar 

  11. Berdichevsky V.: Variational Principles of Continuum Mechanics. Springer, Berlin (2009)

    Google Scholar 

  12. Bouyge F., Jasiuk I., Ostoja-Starzewski M.: A micromechanically based couple-stress model of an elastic two-phase composite. Int. J. Solids Struct. 38(10-13), 1721–1735 (2001)

    Article  MATH  Google Scholar 

  13. Bouyge F., Jasiuk I., Boccara S., Ostoja-Starzewski M.: A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. Eur. J. Mech. A Solids 21(3), 465–481 (2002)

    Article  MATH  Google Scholar 

  14. Bleustein J.L.: A note on the boundary conditions of Toupin’s strain-gradient theory. Int. J. Solids Struct. 3(6), 1053–1057 (1967)

    Article  Google Scholar 

  15. Carcaterra A., Akay A.: Dissipation in a finite-size bath. Phys. Rev. E 84, 011121 (2011)

    Article  Google Scholar 

  16. Carcaterra A.: Ensemble energy average and energy flow relationships for nonstationary vibrating systems. J. Sound Vib. 288(3), 751–790 (2005)

    Article  Google Scholar 

  17. Carcaterra A., Sestieri A.: Energy density equations and power flow in structures. J. Sound Vib. 188(2), 269–282 (1995)

    Article  Google Scholar 

  18. Carcaterra A., Akay A., Ko I.M.: Near-irreversibility in a conservative linear structure with singularity points in its modal density. J. Acoust. Soc. Am. 119(4), 2141–2149 (2006)

    Article  Google Scholar 

  19. Carcaterra A., Ciappi E., Iafrati A., Campana E.F.: Shock spectral analysis of elastic systems impacting on the water surface. J. Sound Vib. 229(3), 579–605 (2000)

    Article  Google Scholar 

  20. Carcaterra A., Akay A.: Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. J. Acoust. Soc. Am. 121(4), 1971–1982 (2007)

    Article  Google Scholar 

  21. Casal, P. et, Gouin, H.: Relation entre l’équation de l’énergie et l’équation du mouvement en théorie de Korteweg de la capillaritè. C. R. Acad. Sci. Paris, t. 300, Série II, N. 7:231–233 (1985)

  22. Casal, P.: La théorie du second gradient et la capillarité. C. R. Acad. Sci. Paris, t. 274, Série A, pp. 1571–1574 (1972)

  23. Casal, P.: La capillarité interne. Cahier du

  24. Chambolle A., Francfort G.A., Marigo J.-J.: Revisiting energy release rates in brittle fracture. J. Nonlinear Sci. 20, 395–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chambolle A., Francfort G.A., Marigo J.-J.: When and how do cracks propagate. J. Mech. Phys. Solids 56, 16141622 (2009)

    MathSciNet  Google Scholar 

  26. Cosserat E., Cosserat F.: Note sur la théorie de l’action euclidienne. Gauthier-Villars, Paris (1908)

    Google Scholar 

  27. Cosserat E., Cosserat F.: Sur la Théorie des Corps Déformables. Herman, Paris (1909)

    Google Scholar 

  28. Culla A., Sestieri A., Carcaterra A.: Energy flow uncertainties in vibrating systems: definition of a statistical confidence factor. Mech. Syst. Signal Process. 17(3), 635–663 (2003)

    Article  Google Scholar 

  29. Daher N., Maugin G.A.: Virtual power and thermodynamics for electromagnetic continua with interfaces. J. Math. Phys. 27(12), 3022–3035 (1986) Maugin2011

    Article  MathSciNet  MATH  Google Scholar 

  30. Daher N., Maugin G.A.: The method of virtual power in continuum mechanics. Application to media presenting singular surfaces and interfaces. Acta Mech. 60(3–4), 217–240 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. dell’Isola F., Kosinski W.: Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers. Arch. Mech. 45, 35–333 (1993)

    MathSciNet  Google Scholar 

  32. dell’Isola F., Seppecher P.: The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power. C. R. Acad. Sci.—Serie IIb: Mecanique, Physique, Chimie, Astronomie 321, 303–308 (1995)

    MATH  Google Scholar 

  33. dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. dell’Isola, F., Seppecher, P., Madeo, A.: Beyond Euler-Cauchy Continua: The structure of contact actions in Nth gradient generalized continua: a generalization of the Cauchy tetrahedron argument. CISM Lecture Notes C-1006, Chap.2, Springer, Berlin (2011)

  35. dell’Isola, F., Seppecher, P., Madeo, A.: Fluid Shock wave generation at solid-material discontinuity surfaces in porous media, CISM Lecture Notes C-1006, Chap.7, Springer, Berlin (2011)

  36. Di Carlo e, A., Tatone, A.: (Iper-)Tensioni & Equi-Potenza. AIMETA‘01 XV Congresso AIMETA di Meccanica Teorica e Applicata 15th AIMETA Congress of Theoretical and Applied Mechanics (2001)

  37. Degiovanni M., Marzocchi A., Musesti A.: Edge-force densities and second-order powers. Annali di Matematica 185, 81–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Degiovanni M., Marzocchi A., Musesti A.: Cauchy fluxes associated with tensor fields having divergence measure. Arch. Ration. Mech. Anal. 147, 197–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dunn J.E., Serrin J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88(2), 95–133 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dunn J.E.: Interstitial working and a non classical continuum thermodynamics. In: Serrin, J. (ed.) New Perspectives in Thermodynamics, pp. 187–222. Springer, Berlin (1986)

    Chapter  Google Scholar 

  41. Exadaktylos G.E., Vardoulakis I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335(1–2), 81–109 (2001)

    Article  Google Scholar 

  42. Fannjiang A.C., Chan Y.S., Paulino G.H.: Strain gradient elasticity for antiplane shear cracks: a hypersingular integrodifferential equation approach. SIAM J. Appl. Math. 62(3), 1066–1091 (2001)

    Article  MathSciNet  Google Scholar 

  43. Forest, S., Amestoy, M., Cantournet, S., Damamme, G., Kruch, S.: Mécanique des Milieux Continus, ECOLE DES MINES DE PARIS Année (2005–2006)

  44. Forest S.: Mechanics of generalized continua: construction by homogenization. J. Phys. IV France 8, Pr439–Pr448 (1998)

    Article  MathSciNet  Google Scholar 

  45. Forest S.: Homogenization methods and the mechanics of generalized continua—part 2. Theor. Appl. Mech. 28(29), 113–143 (2002)

    Article  MathSciNet  Google Scholar 

  46. Forest, S.: Milieux continus généralisés et matériaux hétérogènes. Les Presses de l’Ecole des Mines de Paris (2006). ISBN : 2-911762-67-3

  47. Forest S.: Generalized continua. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S. (eds) Encyclopedia of Materials: Science and Technology Updates, pp. 1–7. Elsevier, Oxford (2005)

    Chapter  Google Scholar 

  48. Forest, S., Amestoy, M.: Mécanique des milieux continus. Cours de l’Ecole des Mines de Paris n 3121 (2004, 2005, 2006)

  49. Forest, S.: Milieux continus généralisés et matériaux hétérogènes. Mémoire d’habilitation à diriger des recherches (2004)

  50. Forestier A., Gavrilyuk S.: Criterion of hyperbolicity for non-conservative quasilinear systems admitting a partially convex conservation law. Math. Meth. Appl. Sci. 3(1), 21482158 (2011)

    MathSciNet  Google Scholar 

  51. Fosdick R., Virga E.G.: A variational proof of the stress theorem of Cauchy. Arch. Ration. Mech. Anal. 105, 95–103 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  52. Fosdick R.: Observations concerning virtual power. Math. Mech. Solids 16, 573–585 (2011)

    Article  MathSciNet  Google Scholar 

  53. Fosdick R.: On the principle of virtual power for arbitrary parts of a body. Contin. Mech. Thermodyn. 23, 483–489 (2011)

    Article  MathSciNet  Google Scholar 

  54. Francfort G.A., Marigo J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  55. Gavrilyuk S., Gouin H.: A new form of governing equations of fluids arising from Hamilton’s principle. Int. J. Eng. Sci. 37, 1495–1520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Gavrilyuk, S., Gouin, H.: Geometric evolution of the Reynolds stress tensor in three-dimensional turbulence. In: Greco A, Rionero S, Ruggeri T (eds), World Scientific, pp. 182–190 (2010). ISBN 978-981-43170-41-2

  57. Fried E., Gurtin M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small length scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Fried E., Gurtin M.E.: A continuum mechanical theory for turbulence: a generalized Navier -Stokes-equation with boundary conditions. Theor. Comput. Fluid Dyn. 182, 513–554 (2008)

    MathSciNet  Google Scholar 

  59. Germain P.: Cours de Mècanique des Milieux Continus, tome I. Masson, Paris (1973)

    MATH  Google Scholar 

  60. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie. Théorie du second gradient. J. Mécanique 12, 235–274 (1973)

    MathSciNet  MATH  Google Scholar 

  61. Germain P.: The method of virtual power in continuum mechanics—part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  62. Germain P.: Sur l’application de la méthode des puissances virtuelles en mécanique des milieux continus. C. R. Acad. Sci. Paris Série A-B 274, A1051–A1055 (1972)

    MathSciNet  Google Scholar 

  63. Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  64. Green A.E., Rivlin R.S.: Simple force and stress multipoles. Arch. Ration. Mech. Anal. 16, 325–353 (1964)

    MathSciNet  MATH  Google Scholar 

  65. Green A.E., Rivlin R.S.: On Cauchy’s equations of motion. Z. Angew. Math. Phys. (ZAMP) 15, 290–292 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  66. Green A.E., Rivlin R.S.: Multipolar continuum mechanics: functional theory I. Proc. R. Soc. Ser. A 284, 303–324 (1965)

    Article  MathSciNet  Google Scholar 

  67. Gurtin M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. Int. J. Plasticity 50, 809–819 (2002)

    MathSciNet  Google Scholar 

  68. Gurtin M.E., Anand L.: Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. Gurtin M.E., Fried E., Anand L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  70. Hamed E., Lee Y., Jasiuk I.: Multiscale modeling of elastic properties of cortical bone. Acta Mech. 213(1–2), 131–154 (2010)

    Article  MATH  Google Scholar 

  71. Hubbard, J.H., Hubbard, B.B.: Vector Calculus, Linear algebra and differential forms, a unified approach. Prentice Hall ed., (2009)

  72. Iafrati A., Carcaterra A., Ciappi E., Campana E.F.: Hydroelastic analysis of a simple oscillator impacting the free surface. J. Ship Res. 44(3–4), 278–289 (2000)

    Google Scholar 

  73. Jasiuk I.: Modeling of trabecular bone as a hierarchical material. Comput. Fluid Solid Mech. 1(2), 1727–1728 (2003)

    Article  Google Scholar 

  74. Jasiuk I., Ostoja-Starzewski M.: On the reduction of constants in planar Cosserat elasticity with eigenstrains and eigencurvatures. J. Therm. Stress. 26, 1221–1228 (2003)

    Article  Google Scholar 

  75. Joumaa, H., Ostoja-Starzewski, M.: Stress and couple-stress invariance in non-centrosymmetric micropolar planar elasticity, online. In: Proceedings of Royal Society A (2011)

  76. Kirchner N., Steinmann P.: On the material setting of gradient hyperelasticity (English summary). Math. Mech. Solids 12(5), 559–580 (2006)

    Article  MathSciNet  Google Scholar 

  77. Kosinski W.: Field Singularities and Wave Analysis in Continuum Mechanics. Ellis Horwood Series: Mathematics and Its Applications. Wiley, PWN-Polish Scientific Publishers, Warsaw (1986)

    Google Scholar 

  78. Lagrange, J.-L.: Mécanique Analytique. Éditions Jaques Gabay Sceaux (1989)

  79. Larsson R., Diebels S.A: Second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int. J. Numer. Methods Eng. 69(12), 2485–2512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  80. Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Accepted by ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik

  81. Li J., Ostoja-Starzewski M.: Micropolar continuum mechanics of fractal media. Int. J. Eng. Sci. 49, 1302–1310 (2011)

    Article  MathSciNet  Google Scholar 

  82. Madeo A., Lekszycki T., dell’Isola F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. CRAS Mécanique 339(10), 625–682 (2011)

    Article  Google Scholar 

  83. Marigo J.-J., Pideri C.: The effective behavior of elastic bodies containing microcracks or micro holes localized on a surface. Int. J. Damage Mech. 20, 1151–1177 (2011)

    Article  Google Scholar 

  84. Lazar M., Maugin G.A.: A note on line forces in gradient elasticity. Mech. Res. Commun. 33, 674–680 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  85. Marzocchi A., Musesti A.: Balanced Virtual Powers in continuum mechanics. Meccanica 38, 369–389 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  86. Marzocchi A., Musesti A.: Decomposition and integral representation of Cauchy interactions associated with measures. Contin. Mech. Thermodyn. 13, 149–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  87. Maugin G.A., Metrikine A.V.: Mechanics of Generalized Continua, One Hundred Years After the Cosserats. Springer, Berlin (2010)

    MATH  Google Scholar 

  88. Maugin, G.A.: The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool In memory of Paul Germain (1920–2009). Cont. Mech. Thermodyn. Published On-Line. doi:10.1007/s00161-011-0196-7, pp. 1–20

  89. Mindlin R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  90. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  91. Mindlin, R.D.: Complex representation of displacements and stresses in plane strain with couple-stresses. 1965 Appl. Theory of Functions in Continuum Mechanics (Proc. Internat. Sympos., Tbilisi), Vol. I, Mechanics of Solids (Russian) pp. 256–259, Izdat. Nauka”, Moscow (1963)

  92. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  93. Mindlin R.D.: Influence of couple-stresses on stress concentrations Main features of cosserat theory are reviewed by lecturer and some recent solutions of the equations, for cases of stress concentration around small holes in elastic solids, are described. Exp. Mech. 3(1), 1–7 (1962)

    Article  MathSciNet  Google Scholar 

  94. Mindlin R.D., Eshel N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  95. Mindlin R.D.: Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1(3), 265–271 (1965)

    Article  Google Scholar 

  96. Mindlin R.D.: On the equations of elastic materials with micro-structure. Int. J. Solids Struct. 1(1), 73–78 (1965)

    Article  Google Scholar 

  97. Noll W., Virga E.G.: On edge interactions and surface tension. Arch. Ration. Mech. Anal. 111(1), 1–31 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  98. Noll, W.: The foundations of classical mechanics in the light of recent advances in continuum mechanics. In: Proceedings of the Berkeley Symposium on the Axiomatic Method, Amsterdam, pp. 226–281 (1959)

  99. Noll W.: Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Ration. Mech. Anal. 52, 62–92 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  100. Noll W.: The geometry of contact separation and reformation of continuous bodies. Arch. Ration. Mech. Anal. 122(3), 197–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  101. Ostoja-Starzewski M., Boccara S., Jasiuk I.: Couple-stress moduli and characteristic length of composite materials. Mech. Res. Commun. 26(4), 387–396 (1999)

    Article  MATH  Google Scholar 

  102. Ostoja-Starzewski, M., Jasiuk, I.: Stress invariance in planar Cosserat elasticity. In: Proceedings of the Royal Society, London A 451, pp. 453–470; Errata 452, 1503, (1995)

  103. Ostoja-Starzewski M.: Macrohomogeneity condition in dynamics of micropolar media. Arch. Appl. Mech. 81(7), 899–906 (2011)

    Article  Google Scholar 

  104. Ostoja-Starzewski M.: Microstructural Randomness and Scaling in Mechanics of Materials. Chapman & Hall/CRC Press, Boca Raton (2009)

    Google Scholar 

  105. Pideri C., Seppecher P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  106. Podio-Guidugli P.: A virtual power format for thermomechanics. Contin. Mech. Thermodyn. 20, 479–487 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  107. Podio-Guidugli, P.: Contact interactions, stress, and material symmetry, for nonsimple elastic materials. (English, Serbo-Croatian summary) Issue dedicated to the memory of Professor Rastko Stojanovic (Belgrade, 2002). Theor. Appl. Mech. 28/29, pp. 261–276 (2002)

  108. Podio-Guidugli P., Vianello M.: Hypertractions and hyperstresses convey the same mechanical information. Contin. Mech. Thermodyn. 22, 163–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  109. Polizzotto C.: Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions. Eur. J. Mech. A Solids 26(2), 189–211 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  110. Salençon, J.: Mécanique des milieux continus. Ed. Ellipses (1988)–(1995), Handbook of Continuum Mechanics, Ed. Springer (Berlin, 2001) Mécanique des milieux continus. Tome I. Éd. École polytechnique, Palaiseau; Ellipses, Paris, (2002)–(2005)

  111. Schwartz L.: Théorie des Distributions. Hermann, Paris (1973)

    Google Scholar 

  112. Schuricht F.: A new mathematical foundation for contact interactions in continuum physics. Arch. Ration. Mech. Anal. 184, 495–551 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  113. Seppecher, P.: Etude des conditions aux limites en théorie du second gradient: cas de la capillarité. C. R. Acad. Sci. Paris, t. 309, Série II 497502 (1989)

  114. Seppecher, P.: Etude d’une Modélisation des Zones Capillaires Fluides: Interfaces et Lignes de Contact. Thèse de l’Université Paris VI, Avril (1987)

  115. Šilhavý M.: The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch. Ration. Mech. Anal. 90, 195–211 (1985)

    Article  MATH  Google Scholar 

  116. Šilhavý M.: Cauchy’s stress theorem and tensor fields with divergences in Lp. Arch. Ration. Mech. Anal. 116, 223–255 (1991)

    Article  MATH  Google Scholar 

  117. Sokolowski, M.: Theory of couple-stresses in bodies with constrained rotations. In: CISM courses and lectures, vol. 26. Springer, Berlin (1970)

  118. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. I and II, 2nd edn. Publish or Perish, Inc., Wilmington, Del (1979)

  119. Steinmann P.: On boundary potential energies in deformational and configurational mechanics. J. Mech. Phys. Solids 56, 772–800 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  120. Suiker A.S.J., Chang C.S.: Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech. 142, 223–234 (2000)

    Article  MATH  Google Scholar 

  121. Sunyk R., Steinmann P.: On higher gradients in continuum-atomistic modelling. Int. J. Solids Struct. 40(24), 6877–6896 (2003)

    Article  MATH  Google Scholar 

  122. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  123. Toupin R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  124. Triantafyllidis N., Bardenhagen S.: On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J. Elast. 33(3), 259–293 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  125. Triantafyllidis N., Bardenhagen S.: The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. J. Mech. Phys. Solids 44(11), 1891–1928 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  126. Truesdell C.A.: A First Course in Rational Continuum Mechanics, vol. I General Concepts. Academic Press, New York (1977)

    Google Scholar 

  127. Truesdell C., Toupin R.A.: The Classical Field Theories, Handbuch der Physik III/1. Springer, Berlin (1960)

    Google Scholar 

  128. Triantafyllidis N., Aifantis E.C.: A gradient approach to localization of deformation. I. Hyperelastic materials. J. Elast. 16(3), 225–237 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  129. Yang Y., Misra A.: Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation. Comput. Model. Eng. Sci. 64(1), 1–36 (2010)

    MathSciNet  MATH  Google Scholar 

  130. Yang Y., Ching W.Y., Misra A.: Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)

    Article  Google Scholar 

  131. Vailati, G.: Il principio dei lavori virtuali da Aristotele a Erone d’Alessandria. Scritti (Bologna, Forni, 1987), vol. II, pp. 113–128, Atti della R. Accademia delle Scienze di Torino, vol. XXXII, adunanza del 13 giugno 1897, quaderno IG (091) 75 I–III (1897)

  132. Wang C.Y., Feng L., Jasiuk I.: Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. J. Biomech. Eng. Trans. ASME 12, 131 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco dell’Isola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dell’Isola, F., Seppecher, P. & Madeo, A. How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert” . Z. Angew. Math. Phys. 63, 1119–1141 (2012). https://doi.org/10.1007/s00033-012-0197-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0197-9

Mathematics Subject Classification (2010)

Keywords

Navigation