Skip to main content
Log in

Diffractive optics with harmonic radiation in 2d nonlinear photonic crystal waveguide

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The propagation of modulated light in a 2d nonlinear photonic waveguide is investigated in the framework of diffractive optics. It is shown that the dynamics obeys a nonlinear Schrödinger equation at leading order. We compute the first and second corrector and show that the latter may describe some dispersive radiation through the structure. We prove the validity of the approximation in the interval of existence of the leading term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. di Pisa 2, 151–218 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators, vol. 29, Mathematical Notes, Princeton University Press (1982)

  3. Ammari H., Santosa F.: Guided waves in photonic bandgap structure with line defect. SIAM Appl. Math. 64(6), 2018–2033 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auscher P., McIntosh A., Tchamitchian P.: Heat kernels of second order complex elliptic operators and applications. J. Funct. Anal. 152(1), 22–73 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banica V.: Dispersion and Strichartz inequalities for Schrödinger equations with singular coefficients. SIAM J. Math. Anal. 35, 868–883 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babin A., Figotin A.: Nonlinear photonic crystals: IV. Nonlinear Schrödinger equation regime. Waves Random Complex Media 15(2), 145–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhat N.A.R., Sipe J.E.: Optical pulse propagation in nonlinear photonic crystals. Phys. Rev 64, 056604-1–05660-16 (2001)

  8. Birman M.Sh.: The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. II. Nonregular perturbations. St. Petersburg Math. J. 9(6), 1073–1095 (1998)

    MathSciNet  Google Scholar 

  9. Borisov D.I., Gadyl’shin R.R.: On the spectrum of a periodic operator with a small localized perturbation. Izv. RAN. Ser. Math. 72(4), 37–66 (2008)

    MathSciNet  Google Scholar 

  10. Busch K., Schneider G., Tkeshelashvili L., Uecker H.: Justification of the nonlinear Schrödinger equation in spatially periodic media. ZAMP 57, 1–35 (2006)

    Article  MathSciNet  Google Scholar 

  11. Busch K., von Freymann G., Linden S., Mingaleev S.F., Tkeshelashvili L., Wegener M.: Periodic nanostructures for photonics. Phys. Rep. 444, 101–202 (2007)

    Article  Google Scholar 

  12. Deift P.: Review: Shmuel Agmon, lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators. Bull. Am. Math. Soc. (N.S.) 12(1), 165–169 (1985)

    Article  MathSciNet  Google Scholar 

  13. Duclos P., Exner P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7, 73–102 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dimassi M.: Discrete spectrum of an elliptic periodic differential operator perturbed by a differential operator with decaying coefficient. C.R.A.S. Ser. I Math. 326(10), 1181–1184 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Donnat P., Rauch J.: Dispersive nonlinear geometric optics. J. Math. Phys. 38(3), 1484–1523 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eastham M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh (1973)

    MATH  Google Scholar 

  17. Figotin A., Kuchment P.: Band-gap structure of spectra of periodic dielectric and acoustic media. II. 2D photonic crystals. SIAM J. Appl. Math. 56, 1561–1620 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Figotin A., Klein A.: Localized classical waves created by defects. J. Stat. Phys. 86, 165–177 (1997a)

    Article  MathSciNet  MATH  Google Scholar 

  19. Figotin A., Klein A.: Localization of classical waves II: electromagnetic waves. Commun. Math. Phys. 184, 411–441 (1997b)

    Article  MathSciNet  MATH  Google Scholar 

  20. Figotin A., Klein A.: Midgap defect modes in dielectric and acoustic media. SIAM J. Appl. Math. 58(6), 1748–1773 (1998a)

    Article  MathSciNet  MATH  Google Scholar 

  21. Figotin A., Klein A.: Localization of light in lossless inhomogeneous dielectrics. J. Opt. Soc. Am. 15(5), 1423–1435 (1998b)

    Article  Google Scholar 

  22. Figotin A., Klein A.: Midgap defect modes in dielectric and acoustic media. SIAM J. Appl. Math. 58(6), 1748–1773 (1998c)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guès O.: Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires. Asymptot. Anal. 6(3), 241–269 (1993)

    MATH  Google Scholar 

  24. Hochstadt H.: A special Hill’s equation with discontinuous coefficients. Am. Math. Mon. 70(1), 18–26 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  25. Holmer J., Marzuola J., Zworski M.: Fast soliton scattering by delta impurities. Commun. Math. Phys. 274(1), 187–216 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hunziker W., Sigal I.M., Soffer A.: Minimal escape velocities. CPDE 24(11&12), 2279–2295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kato, T.: Perturbation Theory for Linear Operators. Springer, Classics in Mathematics (1995)

  28. Keh-Yi L., Chia-Chen T., Tsong-Cheng W., Yi-Lin K., Chih-Wei K., Kuei-Yuan C., Yu-Jen L.: Transmission characteristics of 90° Bent photonic crystal waveguides. Fiber Integr. Opt. 25(1), 29–40 (2006)

    Article  Google Scholar 

  29. Kuchment P.: The mathematics of photonic crystals. SIAM Math. Mod. Opt. Sci. 22, 207–272 (2001) (chap. 7)

    Article  MathSciNet  Google Scholar 

  30. Kuramochi E., Notomi M., Mitsugi S., Shinya A., Tanabe T., Watanabe T.: Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88(4), 0–3 (2006)

    Article  Google Scholar 

  31. Lannes D.: Dispersion effects for nonlinear geometrical optics with rectification. Asymptot. Anal. 18, 111–146 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Lannes D.: Secular growth estimates for hyperbolic systems. J. Differ. Equ. 190(2), 466–503 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mourre E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun. Math. Phys. 78, 391–408 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reed M., Simon B.: Methods of Modern Mathematical Physics, Vol. 4: Analysis of Operators. Academic Press, Princeton (1978)

    Google Scholar 

  35. Soffer A., Weinstein M.I.: Resonances, radiation damping, and instability of Hamiltonian nonlinear waves. Inventiones Mathematicae 136, 9–74 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Lescarret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lescarret, V., Schneider, G. Diffractive optics with harmonic radiation in 2d nonlinear photonic crystal waveguide. Z. Angew. Math. Phys. 63, 401–427 (2012). https://doi.org/10.1007/s00033-012-0196-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0196-x

Mathematics Subject Classification (2000)

Keywords

Navigation