Zeitschrift für angewandte Mathematik und Physik

, Volume 63, Issue 1, pp 191–202 | Cite as

Further mathematical results concerning Burgers fluids and their generalizations

Article

Abstract

In this paper, we extend the earlier work by Quintanilla and Rajagopal (Math Methods Appl Sci 29: 2133–2147, 2006) and establish qualitative new results for a proper generalization of Burgers’ original work that stems form a general thermodynamic framework. Such fluids have been used to describe the behavior of several geological materials such as asphalt and the earth’s mantle as well as polymeric fluids. We study questions concerning stability, uniqueness and continuous dependence on initial data for the solutions of the flows of these fluids. We show that if certain conditions are not satisfied by the material moduli, the solutions could be unstable. The spatial behavior of the solutions is also analyzed.

Mathematics Subject Classification (2000)

35K25 35Q86 76A05 

Keywords

Generalized Burgers fluids Energy methods Stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz M., Stegun I.A. (ed.): Handbook of Mathematical Functions. Dover, New York (1965)Google Scholar
  2. 2.
    Burgers J.M.: Mechanical Considerations—Model Systems—Phenomenological Theories of Relaxation and Viscosity. First report on viscosity and plasticity 2nd Edition Prepared by the committee for the study of viscosity of the academy of sciences at Amsterdam. Nordermann Publishing, New York (1939)Google Scholar
  3. 3.
    Dafermos C.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Fetecau C., Hayat T., Fetecau C.: Steady state solutions for some simple flows of generalized burgers fluids. Int. J. Non-Linear Mech. 41, 880–887 (2006)MATHCrossRefGoogle Scholar
  5. 5.
    Harrison R.J., Redfern S.A.T.: The influence of transformation twins on the seismic frequency elastic and anelastic properties of perovskite: dynamical analysis of single crystal LaAlO. Phys. Earth Planet. Inter. 134, 253–272 (2002)CrossRefGoogle Scholar
  6. 6.
    Hayat T., Khan S.B., Khan M.: Exact solution for rotating flows of a genralized Burgers’ fluid in a porous space. Appl. Math. Model. 32, 749–760 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Horgan C.O., Payne L.E., Wheeler L.T.: Spatial decay estimates in transient heat conduction. Q. Appl. Math. 42, 119–127 (1984)MathSciNetMATHGoogle Scholar
  8. 8.
    Horgan C.O., Quintanilla R.: Spatial decay of transient end effects in functionally graded heat conducting materials. Q. Appl. Math. 59, 529–542 (2001)MathSciNetMATHGoogle Scholar
  9. 9.
    Le Roux C., Patidar K.C.: On the flow of a generalized Burgers fluid in a ortogonal rheometer. Nonlinear Anal. Real World Appl. 9, 1882–1893 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kleman V., Wu P., Wolf D.: Compressive viscoelasticity: stability of solutions for homogeneous plane-earth models. Geophys. J. Int. 153, 569–585 (2003)CrossRefGoogle Scholar
  11. 11.
    Muralikrishnan J., Rajagopal K.R.: Review of the uses and modeling of bitumen from ancient to modern times. Appl. Mech. Rev. 56, 149–214 (2003)CrossRefGoogle Scholar
  12. 12.
    Muralikrishnan J., Rajagopal K.R., Little D.N.: On the mechanical behavior of asphalt. Mech. Mater. 37, 110–1085 (2005)Google Scholar
  13. 13.
    Quintanilla R., Racke R.: A note on stability of dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 49, 1209–1213 (2006)MATHCrossRefGoogle Scholar
  14. 14.
    Quintanilla R., Racke R.: Qualitative aspects in dual-phase-lag heat conduction. Proc. R. Soc. Lond. A 463, 659–674 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Quintanilla R., Rajagopal K.R.: On Burgers fluids. Math. Methods Appl. Sci. 29, 2133–2147 (2006)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ravindran P., Krishnan J.M., Rajagopal K.R.: A note on the flow of a Burgers fluid in an orthogonal rheometer. Int. J. Eng. Sci. 42, 1973–1985 (2004)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Rajagopal K.R., Srinivasa A.R.: A thermodynamics framework for rate type fluid models. J. Non-Newton. Fluid Mech. 88, 207–227 (2000)MATHCrossRefGoogle Scholar
  18. 18.
    Rumpker G., Wolf D.: Viscoelastic relaxation of a Burgers half-space: implications for the interpretation of the Fennoscandian uplift. Geophys. J. Int. 124, 541–555 (1996)CrossRefGoogle Scholar
  19. 19.
    Sokolnikoff I.S., Redheffer R.M.: Mathematics of physics and modern engineering, 2nd edn. McGraw-Hill, New York (1966)MATHGoogle Scholar
  20. 20.
    Tong D., Shan L.: Exact solutions for the generalized Burgers’ fluid in an annular pipe. Meccanica 44, 427–431 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Tromp J., Mitrovica J.X.: Surface loading of a viscoelastic earth-general theory. Geophys. J. Int. 137, 847–855 (1999)CrossRefGoogle Scholar
  22. 22.
    Tzou D.Y.: A unified approach for heat conduction from macro to micro-scales. ASME J. Heat Transf. 117, 8–16 (1995)CrossRefGoogle Scholar
  23. 23.
    Tzou D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38, 3231–3240 (1995)CrossRefGoogle Scholar
  24. 24.
    Xue C., Nie J.: Exact solutions of Stokes’ first problem for heated generalized Burgers’ fluid in a porous-half space. Nonlinear Anal. Real World Appl. 9, 1628–1637 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Matematica Aplicada 2 U.P.C.TerrassaSpain
  2. 2.Mechanical EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations