Skip to main content
Log in

On multiscale homogenization problems in boundary layer theory

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with the homogenization of the equations describing a magnetohydrodynamic boundary layer flow past a flat plate, the flow being subjected to velocities caused by injection and suction. The fluid is assumed incompressible, viscous and electrically conducting with a magnetic field applied transversally to the direction of the flow. The velocities of injection and suction and the applied magnetic field are represented by rapidly oscillating functions according to several scales. We derive the homogenized equations, prove convergence results and establish error estimates in a weighted Sobolev norm and in C 0-norm. We also examine the asymptotic behavior of the solutions of the equations governing a boundary layer flow past a rough plate with a locally periodic oscillating structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G., Amar M.: Boundary layer tails in periodic homogenization. ESAIM Control Optim. Calc. Var. 4, 209–243 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amirat Y., Bodart O., Chechkin G.A., Piatnitski A.L.: Boundary homogenization in domains with randomly oscillating boundary. Stoch. Proc. Appl. 121, 1–23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amirat Y., Bresch D., Lemoine J., Simon J.: Effect of rugosity on a flow governed by Navier-Stokes equations. Q. Appl. Math. 59(4), 769–785 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Ball, J.M., Murat, F.: Remarks on rank-one convexity and quasiconvexity. Ordinary and partial differential equations, Vol. III (Dundee 1990), pp. 25–37. Pitman Res. Notes Math. Ser., 254. Longman Sci Tech., Harlow (1991)

  5. Basson A., Gérard-Varet D.: Wall laws for fluid flows at a boundary with random roughness. Comm. Pure Appl. Math. 61(7), 941–987 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belyaev, A.G.: On Singular Perturbations of Boundary-Value Problems (Russian). PhD thesis, Moscow State University (1990)

  7. Bensoussan A., Lions J.L., Papanicolau G.: Asymptotic Analysis for Periodic Structures. North-holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Braides A., Lukkassen D.: Reiterated homogenization of integral functionals. Math. Mod. Meth. Appl. Sci. 10(1), 47–71 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Briane, M.: Homogénéisation de matériaux fibrés et multi-mouches (French). PhD thesis, University Paris 6 (1990)

  10. Bucur D., Feireisl E., Necǎsová S., Wolf J.: On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries. J. Differ. Equ. 244(11), 2890–2908 (2008)

    Article  MATH  Google Scholar 

  11. Caflisch R.E., Sammartino M.: Existence and singularities for the Prandtl boundary layer equations. Z. Angew. Math. Mech. 80(11–12), 733–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casado-Diaz J., Fernàndez-Cara E., Simon J.: Why viscous fluids adhere to rugose walls: a mathematical explanation. J. Differ. Equ. 189, 526–537 (2003)

    Article  MATH  Google Scholar 

  13. Chechkin G.A., Friedman A., Piatnitski A.L.: The boundary-value problem in domains with very rapidly oscillating boundary. J. Math. Anal. Appl. 231(1), 213–234 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chechkin, G.A., Piatnitski, A.L., Shamaev, A.S.: Homogenization: methods and applications. Translations of Mathematical Monographs, Vol. 234, American Mathematical Society (AMS), Providence, RI (Translated from Homogenization: Methods and Applications. Tamara Rozhkovskaya Press, Novosibirsk) (2007)

  15. Chechkin, G.A., Romanov, M.S.: On Prandtls equations in domain with oscillating boundary. In: Book of Abstracts of the International Conference “Tikhonov and Contemporary Mathematics” (June 14–25 2006, Moscow, Russia), Section “Functional Analysis and Differential Equations”, pp. 219–220. MAKS Press, Moscow (2006)

  16. E W.: Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math. Sin. (Engl. Ser.) 16(2), 207–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Friedman A., Hu B., Liu Y.: A boundary-value problem for the Poisson equation with multiscale oscillating boundary. J. Differ. Equ. 137(1), 54–93 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Galdi G.P.: An introduction to the Mathematical Theory of the Navier-Stokes Equations. I. Linearized Steady Problems, Springer Tracts in Natural Philosophy. Springer, New York (1994)

    Google Scholar 

  19. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. II. Nonlinear Steady Problems. Springer Tracts in natural Philosophy. Springer, New York (1994)

    Google Scholar 

  20. Gérard-Varet D., Dormy E.: On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. 23, 591–609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gérard-Varet D.: The Navier wall law at a boundary with random roughness. Comm. Math. Phys. 286, 81–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gérard-Varet, D., Masmoudi, N.: Homogenization and boundary layer (Preprint) (2010)

  23. Ilin, A.M.: Matching of asymptotic expansions of solutions of boundary-value problems. Translations of Mathematical Monographs, Vol. 102. American Mathematical Society, Providence, RI (1992)

  24. Jäger W., Mikelić A.: On the roughness-induced boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)

    Article  MATH  Google Scholar 

  25. Jäger W., Mikelić A.: Couette flows over rough boundary and drag reduction. Comm. Math. Phys. 232, 429–455 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Kato T.: Remarks on the zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Chern, S.S. (eds) Seminar on Nonlinear Partial Differential Equations, pp. 85–98. Springer, NY (1984)

    Chapter  Google Scholar 

  27. Kulonen G.A.: A Method of finding the laminar boundary layer on a porous surface (Russian). Vestnik Leningrad. Univ. 16(7), 123–135 (1961)

    MathSciNet  Google Scholar 

  28. Kulonen G.A., Kulonen L.A.: Boundary layer with suction through a system of fissures of finite width. Prikl. Mekh. 14(9), 83–88 (1978)

    Google Scholar 

  29. Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, London (1969)

    MATH  Google Scholar 

  30. Ladyzhenskaya, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, 23 (1967)

  31. Lin, C.C.: On periodically oscillating wakes in the Oseen approximation. In: Studies in Mathematics and Mechanics Presented to Richard von Mises, pp. 170–176. Academic Press Inc., New York (1954)

  32. Lin, C.C.: Motion in the boundary layer with a rapidly oscillating external flow. In: Proceedings of 9-th International Congress Applied Mechanics. Brussels, Vol. 4, pp. 155–167 (1957)

  33. Lions J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  34. Lions J.L., Lukkassen D., Persson L.E., Wall P.: Reiterated homogenization of nonlinear monotone operators. Chin. Ann. Math. Ser. B 22(1), 1–12 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions P.L.: Mathematical Topics in Fluid Mechanics. Volume 1. Incompressible Models. Oxford Science Publications, Oxford (1996)

    Google Scholar 

  36. Lombardo M.C., Cannone M., Sammartino M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35(4), 987–1004 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lopes Filho, M.: Boundary layers and the vanishing viscosity limit for incompressible 2D flow. (Preprint) (2008)

  38. Lukkassen D.: A new reiterated structure with optimal macroscopic behavior. SIAM J. Appl. Math. 59(5), 1825–1842 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lukkassen, D., Milton, G.W.: On hierarchical structures and reiterated homogenization. In: Function Spaces, Interpolation Theory and Related Topics. Proceedings of the International Conference in Honour of Jaak Peetre on his 65th Birthday, Lund, Sweden, August 17–22, 2000, pp. 355–368. Walter de Gruyter, Berlin (2002)

  40. Neuss-Radu M.: A result on the decay of the boundary layers in the homogenization theory. Asymptot. Anal. 23, 313–328 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Oleinik O.A., Samokhin V.N.: Mathematical Models in Boundary Layer Theory. Chapman & Hall/CRC, London (1999)

    MATH  Google Scholar 

  42. Oleinik O.A., Shamaev A.S., Yosifian G.A.: Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992)

    Google Scholar 

  43. Prandtl, L.: Über Flüssigkeitsbewegungen bei sehr kleiner Reibund. In: Verh. Int. Math. Kongr. Heidelberg, 1904. Teubner, pp. 484–494 (1905)

  44. Romanov M.S.: Homogenization of a problem with many scales in magnetic hydrodynamics. J. Math. Sci. 144(6), 4665–4670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space. I and II. Comm. Math. Phys. 192, 433–461, 463–491 (1998)

    Google Scholar 

  46. Samokhin, V.N.: Averaging of a system of Prandtl equations. Differential Equations, 26(3) 369–374 (1990) (Translated from Diff. Uravnenia 26(3): 495–501) (1990)

    Google Scholar 

  47. Sanchez-Palencia E.: Homogenization Techniques for Composite Media. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  48. Schlichting H., Gersten K.: Boundary-Layer Theory. 8-th Revised and Enlarged Edition. Springer, Berlin (2000)

    Google Scholar 

  49. Tartar, L.: Topics in Nonlinear Analysis. 78.13. Publications Mathématiques d’Orsay (1978)

  50. Temam, R.: Navier-Stokes equations. 3rd edn. North-Holland, Amsterdam 1984. Reedited in the AMS-Chelsea Series. American Mathematical Society, Providence, RI (2001)

  51. Temam R., Wang X.: Remarks on the Prandtl equation for a permeable wall. Z. Angew. Math. Mech. 80(11–12), 835–843 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Temam, R., Wang, X.: On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity. Annali della Scuola Norm. Sup. Pisa, vol. dedicated to the memory of E. De Giorgi, Ser. IV, XXV, 807–828 (1997)

  53. Temam R., Wang X.: Boundary layer associated with the incompressible Navier-Stokes equations: the non-characteristic boundary case. J. Differ. Equ. 179, 647–686 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Vishik, M.I., Lyusternik, L.A.: Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekhi Mat. Nauk 12(5), 3–122 (1957) (English transl., Amer. Math. Soc. Transl. 20(2), Amer. Math. Soc., New York 239–364)(1962)

  55. Zeytounian R.K.: Asymptotic Modelling of Fluid Flow Phenomena, Fluid Mechanics and Its Applications. Kluwer, Dordrecht (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Amirat.

Additional information

The work of the second and the third author was partially supported by RFBR (project 12-01-00214).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirat, Y., Chechkin, G.A. & Romanov, M. On multiscale homogenization problems in boundary layer theory. Z. Angew. Math. Phys. 63, 475–502 (2012). https://doi.org/10.1007/s00033-011-0167-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0167-7

Mathematics Subject Classification (2010)

Keywords

Navigation