Skip to main content
Log in

Multiple solutions to a magnetic nonlinear Choquard equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the stationary nonlinear magnetic Choquard equation

$$(- {\rm i}\nabla+ A(x))^{2}u + V (x)u = \left(\frac{1}{|x|^{\alpha}}\ast |u|^{p}\right) |u|^{p-2}u,\quad x\in\mathbb{R}^{N}$$

where A is a real-valued vector potential, V is a real-valued scalar potential, N ≥ 3, \({\alpha \in (0, N)}\) and 2 − (α/N) < p < (2Nα)/(N−2). We assume that both A and V are compatible with the action of some group G of linear isometries of \({\mathbb{R}^{N}}\) . We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition

$$u(gx) = \tau(g)u(x)\quad{\rm for\, all }\ g \in G,\;x \in \mathbb{R}^{N},$$

where \({\tau : G \rightarrow \mathbb{S}^{1}}\) is a given group homomorphism into the unit complex numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cingolani S., Clapp M.: Intertwining semiclassical bound states to a nonlinear magnetic equation. Nonlinearity 22, 2309–2331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cingolani, S., Clapp, M., Secchi, S.: Intertwining semiclassical solutions to a Schrödinger-Newton system, preprint

  5. Cingolani S., Secchi S., Squassina M.: Semiclassical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. Roy. Soc. Edinburgh 140 A, 973–1009 (2010)

    Article  MathSciNet  Google Scholar 

  6. Clapp M., Puppe D.: Critical point theory with symmetries. J. Reine Angew. Math. 418, 1–29 (1991)

    MathSciNet  MATH  Google Scholar 

  7. tom Dieck T.: Transformation Groups. Walter de Gruyter, Berlin-New York (1987)

    Book  MATH  Google Scholar 

  8. Esteban M.J., Lions P.L.: Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. In: (eds) Partial Differential Equations and the Calculus of Variations, Vol. 1, pp. 401–449. Progr. Nonlinear Differential Equations Appl., 1, Birkhäuser Boston, Boston, MA (1989)

    Google Scholar 

  9. Fadell E., Husseini S., Rabinowitz P.H.: Borsuk-Ulam theorems for \({\mathbb{S}^{1} }\) -actions and applications. Trans. Am. Math. Soc. 274, 345–359 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Fröhlich, J., Lenzmann, E.: Mean-field limit of quantum Bose gases and nonlinear Hartree equation. In: Séminaire: Équations aux Dérivées Partielles 2003–2004, Exp. No. XIX, pp. 26. École Polytech., Palaiseau

  11. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^{N} }\) , Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7A. pp. 369–402. Academic Press, New York–London

  12. Ginibre J., Velo G.: On a class of nonlinear Schrödinger equations with nonlocal interaction. Math. Z. 170, 109–136 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lieb E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1977)

    MathSciNet  Google Scholar 

  14. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Math. vol. 14. American Mathematical Society, Providence RI (1997)

  15. Lieb E.H., Simon B.: The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  16. Lions P.-L.: The Choquard equation and related questions. Nonlinear Anal. TMA 4, 1063–1073 (1980)

    Article  MATH  Google Scholar 

  17. Lions, P.-L.: The concentration-compacteness principle in the calculus of variations. The locally compact case. Ann. Inst. Henry Poincaré, Analyse Non Linéaire vol. 1. pp. 109–145 and 223–283 (1984)

  18. Lions, P.-L.: Symmetries and the concentration-compacteness method. In: Nonlinear Variational Problems, pp. 47–56. Pitman, London, (1985)

  19. Ma L., Zhao L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger-Newton equations. Topology of the Universe Conference (Cleveland, OH, 1997), Classical Quantum Gravity vol. 15. pp. 2733–2742 (1998)

  21. Moroz I.M., Tod P.: An analytical approach to the Schrödinger-Newton equations. Nonlinearity 12, 201–216 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nolasco M.: Breathing modes for the Schrödinger–Poisson system with a multiple–well external potential. Commun. Pure Appl. Anal. 9, 1411–1419 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Palais R.: The principle of symmetric criticallity. Comm. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Penrose R.: On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28, 581–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Penrose R.: Quantum computation, entanglement and state reduction. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356, 1927–1939 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Penrose R.: The Road to Reality. A Complete Guide to the Laws of the Universe. Alfred A. Knopf Inc., New York (2005)

    MATH  Google Scholar 

  27. Struwe M.: Variational Methods. Springer, Berlin-Heidelberg (1996)

    MATH  Google Scholar 

  28. Secchi S.: A note on Schrödinger–Newton systems with decaying electric potential. Nonlinear Anal. 72, 3842–3856 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tod P.: The ground state energy of the Schrödinger-Newton equation. Phys. Lett. A 280, 173–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wei J., Winter M.: Strongly interacting bumps for the Schrödinger–Newton equation. J. Math. Phys. 50, 012905 (2009)

    Article  MathSciNet  Google Scholar 

  31. Willem M.: Minimax theorems. PNLDE vol. 24. Birkhäuser, Boston-Basel-Berlin (1996)

    Book  Google Scholar 

  32. Zhang Z., Küpper T., Hu A., Xia H.: Existence of a nontrivial solution for Choquard’s equation. Acta Math. Sci. Ser. B Engl. Ed. 26, 460–468 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Clapp.

Additional information

S. Cingolani is supported by the MIUR proyect Variational and topological methods in the study of nonlinear phenomena (PRIN 2007).

M. Clapp is supported by CONACYT grant 129847 and PAPIIT grant IN101209 (Mexico).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cingolani, S., Clapp, M. & Secchi, S. Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012). https://doi.org/10.1007/s00033-011-0166-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0166-8

Mathematics Subject Classification (2010)

Keywords

Navigation