Skip to main content
Log in

On initial boundary value problems for variants of the Hunter–Saxton equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The Hunter–Saxton equation serves as a mathematical model for orientation waves in a nematic liquid crystal. The present paper discusses a modified variant of this equation, coming up in the study of critical points for the speed of orientation waves, as well as a two-component extension. We establish well-posedness and blow-up results for some initial boundary value problems for the modified Hunter–Saxton equation and the two-component Hunter–Saxton system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Beals R., Sattinger D.H., Szmigielski J.: Inverse scattering solutions of the Hunter–Saxton equation. Appl. Anal. 78(3&4), 255–269 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bressan A., Constantin A.: Global solutions of the Hunter–Saxton equation. SIAM J. Math. Anal. 37(3), 996–1026 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandrasekhar S.: Liquid Crystals, 2nd edn. Cambridge University Press, (1992)

  5. Constantin A., Escher J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin A., Kolev B.: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A 35(32), R51–R79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod. Acta Mech. 127, 193–207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dai H.H., Huo Y.: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod. Proc. Roy. Soc. Lond. Ser. A 456, 331–363 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dullin H.R., Gottwald G., Holm D.D.: On asymptotically equivalent shallow water wave equations. Phys. D 190, 1–14 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escher J., Yin Z.: Well-posedness, blow-up phenomena, and global solutions for the b-equation. J. Reine Angew. Math. 624(1), 51–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escher J., Yin Z.: Initial boundary value problems for nonlinear dispersive wave equations. J. Funct. Anal. 256, 479–508 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hunter J.K., Saxton R.: Dynamics of director fields. SIAM J. Appl. Math. 51, 1498–1521 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hunter J.K., Zheng Y.: On a completely integrable nonlinear hyperbolic variational equation. Physica D 79, 361–386 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Khesin B., Lenells J., Misiołek G.: Generalized Hunter–Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342, 617–656 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khesin B., Misiołek G.: Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176, 116–144 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kohlmann, M.: The curvature of semidirect product groups associated with two-component Hunter–Saxton systems. J. Phys. A: Math. Theor. 44, 225203 (17 pp) (2011)

    Google Scholar 

  17. Lechtenfeld O., Lenells J.: On the N = 2 supersymmetric Camassa–Holm and Hunter–Saxton equations. J. Math. Phys. 50, 012704 (2009)

    Article  MathSciNet  Google Scholar 

  18. Lenells J.: The Hunter–Saxton equation describes the geodesic flow on a sphere. J. Geom. Phys. 57, 2049–2064 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lenells J.: Weak geodesic flow and global solutions of the Hunter–Saxton equation. Disc. Cont. Dyn. Syst. 18, 643–656 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lenells J.: The Hunter–Saxton equation: a geometric approach. SIAM J. Math. Anal. 40(1), 266–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lenells J., Misiołek G., Tǧlay F.: Integrable evolution equations on spaces of tensor densities and their peakon solutions. Commun. Math. Phys. 299, 129–161 (2010)

    Article  MATH  Google Scholar 

  22. Tiǧlay F.: The periodic Cauchy problem of the modified Hunter–Saxton equation. J. Evol. Eq. 5(4), 509–527 (2005)

    Article  Google Scholar 

  23. Wu, H., Wunsch, M.: Global existence for the generalized two-component Hunter–Saxton system. J. Math. Fluid Mech., doi:10.1007/s00021-011-0075-9

  24. Wunsch M.: On the Hunter–Saxton system. Disc. Cont. Dyn. Syst. B 12(3), 647–656 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wunsch M.: The generalized Hunter–Saxton system. SIAM J. Math. Anal. 42(3), 1286–1304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yin Z.: On the structure of solutions to the periodic Hunter–Saxton equation. SIAM J. Math. Anal. 36(1), 272–283 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kohlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlmann, M. On initial boundary value problems for variants of the Hunter–Saxton equation. Z. Angew. Math. Phys. 63, 441–452 (2012). https://doi.org/10.1007/s00033-011-0154-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0154-z

Mathematics Subject Classification (2000)

Keywords

Navigation