Skip to main content
Log in

An analogy between vortical and thermal fields subject to the large pressure gradient

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Local thermal disturbances generated by a small confined mechanical forcing on the curved surface are under consideration within the framework of the interacting boundary layer in the limit of large Reynolds number. The variations of the self-induced pressure and temperature are found to be explicitly related, and an analytic solution of a linear perturbation analysis is presented. The heat flux associated with the self-induced pressure may attain values comparable with the heat flux existing in the oncoming boundary layer. The analogy between the normal-to-wall vorticity and spanwise derivative of temperature is rigorously derived to supersede locally the well-known analogy by Reynolds. Heavily increased thermal loads can cause severe damage to the engine in operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewartson K.: On the flow near the trailing edge of a flat plate II. Mathematika 16, 106–121 (1969)

    Article  Google Scholar 

  2. Neiland, V.Y.: Contribution to the theory of separation of a laminar boundary layer in a supersonic stream. Izv. Akad. Nauk SSSR Mekh. Zhidk. i Gaza 4, 53–57 (1969) (in Russian: English translation: Fluid Dyn. 4, 33–35 (1972))

  3. Messiter A.F.: Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18, 241–257 (1970)

    Article  MATH  Google Scholar 

  4. Smith F.T.: On the high Reynolds number theory of laminar flows. IMA J. Appl. Math. 28, 207–281 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldstein M.E., Hultgren L.S.: Boundary-layer receptivity to long-wave free-stream disturbances. Ann. Rev. Fluid Mech. 21, 137–166 (1989)

    Article  MathSciNet  Google Scholar 

  6. Kozlov V.V., Ryzhov O.S.: Receptivity of boundary layers: Asymptotic theory and experiment. Proc. Roy. Soc. Lond. A429, 341–373 (1990)

    MathSciNet  Google Scholar 

  7. Stewartson K., Williams P.G.: Self-induced separation. Proc. Roy. Soc. Lond. A312, 181–206 (1969)

    Google Scholar 

  8. Stewartson K.: Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech. 14, 145–239 (1974)

    Article  Google Scholar 

  9. Neiland, V.Ya., Bogolepov, V.V., Dudin, G.N., Lipatov, I.I.: Asymptotic theory of viscous supersonic flows. Fizmatlit (2003) (in Russian)

  10. Cowley S.J., Hall P.: On the instability of hypersonic flow past a wedge. J. Fluid Mech. 214, 17–42 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Smith F.T., Brown S.N.: The inviscid instability of a Blasius boundary layer at large values of the Mach number. J. Fluid Mech. 219, 499–518 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liepmann H.W., Brown G.L., Nosenchuck D.M.: Control of laminar-instability waves using a new technique. J. Fluid Mech. 118, 187–200 (1982)

    Article  Google Scholar 

  13. Fox M.D., Kurosaka M., Hedges L., Hirano K.: The influence of vortical structures on the thermal fields of jets. J. Fluid Mech. 255, 447–472 (1993)

    Article  Google Scholar 

  14. Bergles A.E.: Heat transfer enhancement–the encouragement and accommodation of high heat fluxes. ASME J. Heat Transf. 119, 8–19 (1997)

    Article  Google Scholar 

  15. Elyyan M.A., Tafti D.K.: A novel split-dimple interrupted fin configuration for heat transfer augmentation. Int. J. Heat Mass Transf. 52, 1561–1572 (2009)

    Article  MATH  Google Scholar 

  16. Korichi A., Oufer L., Polidori G.: Heat transfer enhancement in self-sustained oscillatory flow in a grooved channel with oblique plates. Int. J. Heat Mass Transf. 52, 1132–1148 (2009)

    Article  Google Scholar 

  17. Webb R.L., Kim N.-H.: Principles of Enhanced Heat Transfer. Taylor & Francis, London (2005)

    Google Scholar 

  18. Bowles R.L., Davies C., Smith F.T.: On the spiking stages in deep transition and unsteady separation. J. Eng. Math. 45, 227–245 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ryzhov O.S.: Transition length in turbine/compressor blade flows. Proc. R. Soc. Lond. 462, 2281–2298 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mayle R.E.: The role of laminar-turbulent transition in gas turbine engines. ASME J. Turbomach. 113, 509–537 (1991)

    Article  Google Scholar 

  21. Antonia R.A., Fulachier L.: Topology of a turbulent boundary layer with and without wall suction. J. Fluid Mech. 198, 429 (1989)

    Article  Google Scholar 

  22. Kong H., Choi H., Lee J.S.: Dissimilarity between the velocity and temperature fields in a perturbed turbulent thermal boundary layer. Phys. Fluids 13, 1466–1479 (2001)

    Article  Google Scholar 

  23. Araya, G., Leonardi, S., Castillo, L.: Numerical assessment of local forcing on the heat transfer in a turbulent channel flow. Phys. Fluids 20 (2008). Online ID 085105-1-22

  24. Kluwick A.: Interacting laminar and turbulent boundary layers. In: Kluwick, A. (eds) Recent Advances in Boundary-Layer Theory, pp. 231–330. Springer, Wien (1998)

    Google Scholar 

  25. Scheichl B., Kluwick A.: Turbulent marginal separation and the turbulent Goldstein problem. AIAA J. 45, 20–36 (2007)

    Article  Google Scholar 

  26. Abe, H., Antonia, R.A.: Near-wall similarity between velocity and scalar fluctuations in a turbulent channel flow. Phys. Fluids 21 (2009). Online ID 025109-1-7

  27. Bogdanova-Ryzhova, E.V., Ryzhov, O.S.: Thermal disturbances induced by mechanical vibrations. In: Hanjalić, K., Nagano, Y., Jakirlić, S. (eds.) Proceedings of the Sixth International Symposium on Turbulence, Heat and Mass Transfer, Rome, Italy (2009)

  28. Ryzhov O.S., Bogdanova-Ryzhova E.V.: Instabilities in boundary-layer flows on a curved surface. J. Fluid Mech. 546, 385–432 (2006)

    MathSciNet  Google Scholar 

  29. Ryzhov O.S., Terent’ev E.D.: Streamwise absolute instability of a three-dimensional boundary layer at high Reynolds numbers. J. Fluid Mech. 373, 111–153 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Smith F.T., Sykes R.I., Brighton P.W.: A two-dimensional boundary layer encountering a three-dimensional hump. J. Fluid Mech. 83, 163–176 (1977)

    Article  MATH  Google Scholar 

  31. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. National Bureau of Standards. Dover, New York (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Ryzhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanova-Ryzhova, E.V., Ryzhov, O.S. An analogy between vortical and thermal fields subject to the large pressure gradient. Z. Angew. Math. Phys. 62, 305–321 (2011). https://doi.org/10.1007/s00033-010-0099-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-010-0099-7

Mathematics Subject Classification (2000)

Navigation