Thin film flow over a non-linear stretching sheet in presence of uniform transverse magnetic field

Article

Abstract

A thin viscous liquid film flow is developed over a stretching sheet under different non-linear stretching velocities in presence of uniform transverse magnetic field. Evolution equation for the film thickness is derived using long-wave approximation of thin liquid film and is solved numerically by using the Newton–Kantorovich method. It is observed that all types of stretching produces film thinning, but non-monotonic stretching produces faster thinning at small distance from the origin. Effect of the transverse magnetic field is to slow down the film thinning process. Observed flow behavior is explained physically.

Mathematics Subject Classification (2000)

76 76A20 76D08 

Keywords

Thin liquid film Free surface flow Viscous flow Non-linear stretching Stretching sheet MHD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gupta P.S., Gupta A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Engg. 55, 744–746 (1977)CrossRefGoogle Scholar
  2. 2.
    Siddappa B., Abel M.S.: Non-Newtonian flow past a stretching plate. Z Angew Math. Phys. (ZAMP) 36, 890–892 (1985)MATHCrossRefGoogle Scholar
  3. 3.
    Andersson H.I., Dandapat B.S.: Flow of a power-law fluid over a stretching sheet. Stability Appl. Anal. Cont. Media. 1, 339–347 (1991)Google Scholar
  4. 4.
    Andersson H.I., Hansen O.R., Holmedal B.: Diffusion of a chemically reactive species from a stretching sheet. Int. J. Heat Mass Trans. 37, 659–664 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Takhar H.S., Chamkha A.J., Nath G.: Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species. Int. J. Engg. Sci. 38, 1303–1314 (2000)CrossRefGoogle Scholar
  6. 6.
    Dandapat B.S., Kitamura A., Santra B.: Transient film profile of thin liquid film flow on a stretching surface. Z. Angew. Math. Phys. (ZAMP) 57, 623–635 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dandapat B.S., Maity S.: Flow of a thin liquid film on an unsteady stretching sheet. Phys. Fluids. 18, 102101 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dandapat B.S., Maity S.: Liquid film flow due to an unsteady stretching sheet. Int. J. Non-Linear Mech. 43(9), 880–886 (2008)CrossRefGoogle Scholar
  9. 9.
    Santra B., Dandapat B.S.: Thin film flow over a nonlinear stretching sheet. Z. Angew. Math. Phys. (ZAMP) 60, 688–700 (2009)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Santra B., Dandapat B.S.: Unsteady thin-film flow over a heated stretching sheet. Int. J. Heat Mass Transf. 52(7–8), 1965–1970 (2009)MATHCrossRefGoogle Scholar
  11. 11.
    Vajravelu K.: Viscous flow over a nonlinearly stretching sheet. Appl. Math. Comput. 124, 281–288 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Vajravelu K., Cannon J.R.: Fluid flow over a nonlinearly stretching sheet. Appl. Math. Comput. 181, 609–618 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cortell R.: Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A 372(5), 631–636 (2008)CrossRefGoogle Scholar
  14. 14.
    Cortell R.: Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184, 864–873 (2007)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Khan S.: Boundary layer viscoelastic fluid flow over an exponentially stretching sheet. Int. J. Appl. Mech. Eng. 11, 321–335 (2006)Google Scholar
  16. 16.
    Raptis A., Perdikis C.: Viscous flowover a non-linearly stretching sheet in the presence of a chemical reaction and magnetic field. Int. J. Non-Linear Mech. 41, 527–529 (2006)MATHCrossRefGoogle Scholar
  17. 17.
    Bhargava R., Sharma S., Takhar H.S., Bg O.A., Bhargava P.: Solutions for micropolar transport phenomena over a nonlinear stretching sheet. Nonlinear Analysis: Modelling and Control 12, 45–63 (2007)MATHGoogle Scholar
  18. 18.
    Oron A., Bankoff S.G.: Dynamics of a condensing liquid film under conjoining/disjoining pressures. Phys. Fluids. 13, 1107–1117 (2001)CrossRefGoogle Scholar
  19. 19.
    Pavlov K.B.: Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface. Magnitnya Gidrodynamika (USSR). 4, 146–147 (1974)Google Scholar
  20. 20.
    Chakrabarti A., Gupta A.S.: Hydro-magnetic flow and heat transfer over a stretching sheet. Q. Appl. Math. 37, 73–78 (1979)MATHGoogle Scholar
  21. 21.
    Andersson H.I.: An exact solution of the Navier-Stakes equations for magnetohydrodynamic flow. Acta Mechanica. 113, 241–244 (1995)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Liu I.C.: A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet. Int. Comm. Heat Mass Trans. 32, 1075–1084 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsSikkim Manipal Institute of TechnologyMajitar, East sikkimIndia
  2. 2.Department of mathematicsJangipur collegeMurshidabadIndia
  3. 3.Physics and Applied Mathematics UnitIndian Statistical InstituteCalcuttaIndia

Personalised recommendations