Skip to main content
Log in

A study of an arbitrary Stokes flow past a fluid coated sphere in a fluid of a different viscosity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A general method to discuss the problem of an arbitrary Stokes flow (both axisymmetric and non-axisymmetric flows) of a viscous, incompressible fluid past a sphere with a thin coating of a fluid of a different viscosity is considered. We derive the expressions for the drag and torque experienced by the fluid coated sphere and also discuss the conditions for the reduction of the drag on the fluid coated sphere. In fact, we show that the drag reduces compared to the drag on a rigid sphere of the same radius when the unperturbed velocity is either harmonic or purely biharmonic, i.e., of the form \({r^2\vec{\textbf{v}}}\), where \({\vec{\textbf{v}}}\) is a harmonic function. Previously Johnson (J Fluid Mech 110:217–238, 1981), who considered a uniform flow showed that the drag on the fluid coated sphere reduces compared to the drag on the uncoated sphere when the ratio of the surrounding fluid viscosity to the fluid-film viscosity is greater than 4. We show that this result is true when the undisturbed velocity is harmonic or purely biharmonic, uniform flow being a special case of the former. However, we illustrate by an example that the drag may increase in a general Stokes flow even if this ratio is greater than 4. Moreover, when the unperturbed velocity is harmonic or purely biharmonic, and the ratio of the surrounding fluid viscosity to the fluid-film viscosity is greater than 4 for a fixed value of the viscosity of the ambient fluid, we determine the thickness of the coating for which the drag is minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almansi E.: Sail ‘integrazione dell’ equazione differenziale Δ2n = 0. Ann. Math. Pura Appl. Ser. III(2), 1–51 (1897)

    Google Scholar 

  2. Anderson J.L., Solomentsev Y.: Hydrodynamic effects of surface layers on colloidal particles. Chem. Eng. Commun. 148–50, 291–314 (1996)

    Article  Google Scholar 

  3. Basset A.B.: A treatise on hydrodynamics with numerous examples, vol. 2. Dover, New York (1961)

    Google Scholar 

  4. Dimitrakopoulos P., Higdon J.J.L.: Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows. J. Fluid Mech. 336, 351–378 (1997)

    Article  MATH  Google Scholar 

  5. Faxén, H.: Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen Ebenen Wänden eingeschlossen ist. Ann. Phys. 68, 89–119 (1922)[Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen Ebenen Wänden eingeschlossen ist. Arkiv fur Matematik Astronomi Och. Fysik 18(29), 1–52 (1924)]

    Google Scholar 

  6. Gupalo P.Yu., Ryazantsev Yu., Chalyuk A.T.: Flow past a sphere coated by a liquid film for small Reynolds numbers. Fluid Dyn. 9(5), 673–682 (1974)

    Article  MATH  Google Scholar 

  7. Hadamard J.S.: Mécanique-Mouvement permanent lent d’une sphère liquide et visqueuse dans un liquide visqueux. C. Rend. Acad. Sci. 152, 1735–1738 (1911)

    MATH  Google Scholar 

  8. Hadamard J.S.: Hydrodynamique-Sur une question relative aux liquides visqueux. C. Rend. Acad. Sci. 154, 109 (1912)

    MATH  Google Scholar 

  9. Hetsroni G., Haber S.: The flow in and around a droplet or bubble submerged in an unbounded arbitrary velocity field. Rheol. Acta 9(4), 488–496 (1970)

    Article  MATH  Google Scholar 

  10. Johnson R.E.: Stokes flow past a sphere coated with a thin fluid film. J. Fluid Mech. 110, 217–238 (1981)

    Article  MATH  Google Scholar 

  11. Kawano S., Hashimoto H., Suyama T.: Heat and fluid flow of two immiscible liquid layers in vertical cylindrical container (application to device for sequential production of solid spherical shells in liquid–liquid–gas systems). JSME Int. J. Ser. B 39, 246–256 (1996)

    Google Scholar 

  12. Kawano S., Hashimoto H., Ihara A., Shin K.: Sequential production of mm-sized spherical shells in liquid–liquid–gas systems. Trans. ASME J. Fluids Eng. 118, 614–618 (1996)

    Article  Google Scholar 

  13. Kawano S., Hashimoto H.: A numerical study on motion of a sphere coated with a thin liquid film at intermediate Reynolds number. J. Fluid Eng. Trans. ASME 119(2), 397–403 (1997)

    Article  Google Scholar 

  14. Kondo, T., Koishi, M.: Microcapsules (Sankyo, in Japanese), pp. 1–82 (1981)

  15. Lee M.C., Kendall J.M. Jr, Bahrami P.A., Wang T.G.: Sensational spherical shells. Aerosp. Am. 24, 72–76 (1986)

    Google Scholar 

  16. O’Neill M.E., Ranger K.B.: On the slow motion of a fluid coated in an immiscible viscous fluid. C. R. Math. Rep. Acad. Sci. Can. 3(5), 261–266 (1981)

    MATH  MathSciNet  Google Scholar 

  17. Palaniappan D., Nigam S.D., Amaranath T., Usha R.: Lamb’s solution of Stokes equations—a sphere theorem. Q. J. Mech. Appl. Math. 45, 47–56 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rybczynski, W.: On the translatory motion of a fluid sphere in a viscous medium. Bull Acad. Sci. Cracow Ser. A 40–46 (1911)

  19. Satoyuki K., Atsushi S., Shohei N.: Deformations of thin liquid spherical shells in liquid–liquid–gas systems. Phys. Fluids 19, 1–11 (2007)

    Google Scholar 

  20. Stokes G.G.: On the effect of the internal friction on the motions of pendulums. Trans. Camb. Philos. Soc. 9(2), 8–106 (1851)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debarjoyti Choudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhuri, D., Sri Padmavati, B. A study of an arbitrary Stokes flow past a fluid coated sphere in a fluid of a different viscosity. Z. Angew. Math. Phys. 61, 317–328 (2010). https://doi.org/10.1007/s00033-009-0056-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-009-0056-5

Mathematics Subject Classification (2000)

Keywords

Navigation