Skip to main content
Log in

Lie group analysis of two-dimensional variable-coefficient Burgers equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The modern group analysis of differential equations is used to study a class of two-dimensional variable coefficient Burgers equations. The group classification of this class is performed. Equivalence transformations are also found that allow us to simplify the results of classification and to construct the basis of differential invariants and operators of invariant differentiation. Using equivalence transformations, reductions with respect to Lie symmetry operators and certain non-Lie ansätze, we construct exact analytical solutions for specific forms of the arbitrary elements. Finally, we classify the local conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M.J., Stegun, I.: Handbook of Mathematical Functions. National Bureau of Standards Appl. Math. Series, No. 55, U.S. Govt. Printing Office, Washington, D.C. (1970)

  2. Bagderina, Y.Y.: Invariants of a family of third-order ordinary differential equations. J. Phys. A Math. Theor. 42, 085204 (21pp) (2009)

    Google Scholar 

  3. Bluman G.W., Kumei S.: Symmetries and Differential Equations. Applied Mathematical Sciences, vol. 81. Springer, Berlin (1989)

    Google Scholar 

  4. Christou M.A., Ivanova N.M., Sophocleous C.: Similarity reductions of the (1 + 3)-dimensional Burgers equation. Appl. Math. Comput. 210, 87–99 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cole J.D.: On a quasilinear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951)

    MATH  MathSciNet  Google Scholar 

  6. Crighton D.G.: Basic nonlinear acoustics. In: Sette, D. (eds) Frontiers in Physical Acoustics, North-Holland, Amsterdam (1986)

    Google Scholar 

  7. Demetriou E., Ivanova N.M., Sophocleous C.: Group analysis of (2+1)- and (3+1)-dimensional diffusion–convection equations. J. Math. Anal. Appl. 348, 55–65 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Doyle J., Englefield M.J.: Similarity solutions of a generalised Burgers equation. IMA J. Appl. Math. 44, 145–153 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edwards M.P., Broadbridge P.: Exceptional symmetry reductions of Burgers’ equation in two and three spatial dimensions. Z. Angew. Math. Phys. 46, 595–622 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Enflo B.O., Rudenko O.V.: To the theory of generalized Burgers’ equations. Acta Acust. United Acust. 88, 155–162 (2002)

    Google Scholar 

  11. Forsyth A.R.: The Theory of Differential Equations, vol. 6. Cambridge University Press, Cambridge (1906)

    Google Scholar 

  12. Hopf E.: The partial differential equation u t  + uu x  = μu xx . Comm. Pure Appl. Math. 3, 201–230 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ibragimov, N.H. (eds): Lie Group Analysis of Differential Equations—Symmetries. Exact Solutions and Conservation Laws, vol. 1. CRC Press, Boca Raton (1994)

    Google Scholar 

  14. Ibragimov N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, New York (1999)

    MATH  Google Scholar 

  15. Ibragimov N.H.: Laplace type invariants for parabolic equations. Nonlinear Dynam. 28, 125–133 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ibragimov N.H.: Invariants of hyperbolic equations: solution of the Laplace problem. J. Appl. Mech. Technol. Phys. 45, 158–166 (2004)

    Article  Google Scholar 

  17. Ibragimov N.H.: Invariants of a remarkable family of nonlinear equations. Nonlinear Dyn. 30, 155–166 (2002)

    Article  MATH  Google Scholar 

  18. Ibragimov N.H.: Equivalence groups and invariants of linear and non-linear equations. Arch. ALGA 1, 9–69 (2004)

    Google Scholar 

  19. Ibragimov N.H., Meleshko S.V.: Linearization of third-order ordinary differential equations by point and contact transformations. J. Math. Anal. Appl. 308, 266–289 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ivanova N.M.: Conservation laws of multidimensional diffusion–convection equations. Nonlinear Dyn. 49, 71–81 (2007) math-ph/0604057

    Article  MATH  MathSciNet  Google Scholar 

  21. Ivanova N.M.: Exact solutions of diffusion-convection equations. Dynamics of PDEs 5, 139–171 (2008) arXiv:0710.4000

    MATH  MathSciNet  Google Scholar 

  22. Katkov, V.L.: Group classification of solutions of Hopf’s equations. Zh. Prikl. Mekh. Tech. Fiz. 6, 105–106 (1965) (in Russian)

    Google Scholar 

  23. Kingston J.G., Sophocleous C.: On point transformations of a generalised Burgers equation. Phys. Lett. A 155, 15–19 (1991)

    Article  MathSciNet  Google Scholar 

  24. Kingston J.G., Sophocleous C.: On form-preserving point transformations of partial differential equations. J. Phys. A Math. Gen. 31, 1597–1619 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Klute A.: A numerical method for solving the flow equation for water in unsaturated materials. Soil Sci. 73, 105–116 (1952)

    Article  Google Scholar 

  26. Lie, S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten IV, Arch. Mat. Naturvidenskab 9 (1884) 431–448, reprinted in: Lie’s Ges. Abhandl. 5, 432–446, Paper XVI (1924)

  27. Lighthill M.J.: Viscosity effects in sound waves of finite amplitude. In: Batchelor, G.K., Davis, R.M. (eds) Surveys in Mechanics, pp. 250–351. Cambridge University Press, Cambridge (1956)

    Google Scholar 

  28. Olver P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin (1986)

    MATH  Google Scholar 

  29. Ovsiannikov, L.V.: Group properties of nonlinear heat equation. Dokl. AN SSSR, 125, 492–495 (1959) (in Russian)

  30. Ovsiannikov L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  31. Ovsyannikov L.V.: Hierarchy of invariant submodels of differential equations. Dokl. Math. 58, 127–129 (1998)

    Google Scholar 

  32. Popovych R.O., Ivanova N.M.: Hierarchy of conservation laws of diffusion–convection equations. J. Math. Phys. 46, 043502 (2005) math-ph/0407008

    Article  MathSciNet  Google Scholar 

  33. Popovych R.O.: Classification of admissible transformations of differential equations. Collection of Works of Institute of Mathematics (Kyiv, Ukraine) 3, 239–254 (2006)

    MATH  Google Scholar 

  34. Rajaee L., Eshraghi H., Popovych R.O.: Multi-dimensional quasi-simple waves in weakly dissipative flows. Phys. D 237, 405–419 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Richards L.A.: Capillary conduction of liquids through porous mediums. Physics 1, 318–333 (1931)

    Article  Google Scholar 

  36. Sionoid P.N., Cates A.T.: The generalized Burgers and Zabolotskaya-Khokhlov equations: transformations, exact solutions and qualitative properties. Proc R Soc Lond A 447, 253–270 (1994)

    Article  MATH  Google Scholar 

  37. Torrisi M., Tracinà R.: Second-order differential invariants of a family of diffusion equations. J. Phys. A Math. Gen. 38, 7519–7526 (2005)

    Article  MATH  Google Scholar 

  38. Tracinà R.: Invariants of a family of nonlinear wave equations. Commun. Nonlinear Sci. Numer. Simul. 9, 127–133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Tsaousi C., Sophocleous C.: On linearization of hyperbolic equations using differential invariants. J. Math. Anal. Appl. 339, 762–773 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zharinov V.V.: Conservation laws of evolution systems. Teoret. Mat. Fiz. 68, 163–171 (1986)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sophocleous.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, N.M., Sophocleous, C. & Tracinà, R. Lie group analysis of two-dimensional variable-coefficient Burgers equation. Z. Angew. Math. Phys. 61, 793–809 (2010). https://doi.org/10.1007/s00033-009-0053-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-009-0053-8

Mathematics Subject Classification (2000)

Keywords

Navigation