Skip to main content
Log in

Cluster formation in opinion dynamics: a qualitative analysis

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper we formulate a discrete version of the bounded confidence model (Deffuant et al. in Adv Complex Syst 3:87–98, 2000; Weisbuch et al. in Complexity 7:55–63, 2002), which is representable as a family of ordinary differential equation systems. Then, we analytically study these systems. We establish the existence of equilibria which correspond to opinion profiles displaying a finite number of isolated clusters. We prove the asymptotic stability of some of these equilibria and show that they represent the asymptotic trend of the solutions of the systems under consideration. For a particular case, we also characterize the initial profiles that lead to different cluster configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo N.: Modeling Complex Living Systems. A Kinetic Theory and Stochastic Game Approach. Birkäuser, Boston (2008)

    MATH  Google Scholar 

  2. Ben-Naim E., Krapivsky P.L., Redner S.: Bifurcations and patterns in compromise processes. Physica D 183, 190–204 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben-Naim E., Krapivsky P.L., Vazquez F., Redner S.: Unity and discord in opinion dynamics. Physica A 330, 99–106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertotti M.L., Delitala M.: From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences. Math. Models Methods Appl. Sci. 14, 1061–1084 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertotti M.L., Delitala M.: On a discrete kinetic approach for modelling persuaders influence in opinion formation processes. Math. Comput. Model. 48, 1107–1121 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertotti M.L., Delitala M.: On the existence of limit cycles in opinion formation processes under time periodic influence of persuaders. Math. Models Methods Appl. Sci. 18, 913–934 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carletti T., Fanelli D., Grolli S., Guarino A.: How to make an efficient propaganda. Europhys. Lett. 74, 222–228 (2006)

    Article  Google Scholar 

  8. Deffuant G., Neau D., Amblard F., Weisbuch G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3, 87–98 (2000)

    Article  Google Scholar 

  9. Fortunato S., Latora V., Pluchino A., Raprda A.: Vector opinion dynamics in a bounded confidence consensus model. Int. J. Mod. Phys. C 16, 1535–1551 (2005)

    Article  MATH  Google Scholar 

  10. Galam S., Zucker J.D.: From individual choice to group decision making. Physica A 287, 644–659 (2000)

    Article  MathSciNet  Google Scholar 

  11. Grabowski A., Kosinski R.A.: Ising-based model of opinion formation in a complex network of interpersonal interactions. Physica A 361, 651–664 (2006)

    Article  Google Scholar 

  12. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis and simulation. J. Artif. Soc. Social Simul. 5(3). http://jasss.soc.surrey.ac.uk/5/3/2.html (2002)

  13. Lorenz J.: Continuous opinion dynamics under bounded confidence: a survey. Int. J. Mod. Phys. C 18, 1819–1838 (2007)

    Article  MATH  Google Scholar 

  14. Lorenz J., Urbig D.: About the power to enforce and prevent consensus by manipulating communication rules. Adv. Complex Syst. 10, 251–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schweitzer F.: Brownian Agents and Active Particles. Springer, Berlin (2003)

    MATH  Google Scholar 

  16. Sznajd-Weron K., Sznajd J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11, 1157–1165 (2000)

    Article  Google Scholar 

  17. Toscani G.: Kinetic models of opinion formation. Comm. Math. Sci. 4, 481–496 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Weisbuch G., Deffuant G., Amblard F., Nadal J.P.: Meet, discuss and segregate. Complexity 7, 55–63 (2002)

    Article  Google Scholar 

  19. Weisbuch G., Deffuant G., Amblard F.: Persuasion dynamics. Physica A 353, 555–575 (2005)

    Article  Google Scholar 

  20. Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Letizia Bertotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertotti, M.L., Delitala, M. Cluster formation in opinion dynamics: a qualitative analysis. Z. Angew. Math. Phys. 61, 583–602 (2010). https://doi.org/10.1007/s00033-009-0040-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-009-0040-0

Mathematics Subject Classification (2000)

Keywords

Navigation