Abstract
We give a new construction of sheaves on a relative site associated to a product \(X \times S\) where S plays the role of a parameter space, expanding the previous construction by the same authors, where the subanalytic structure on S was required. Here we let this last condition fall. In this way the construction becomes much easier to apply when the dimension of S is bigger than one. We also study the functorial properties of base change with respect to the parameter space.
Similar content being viewed by others
References
Deligne, P.: Équations différentielles à points singuliers réguliers. Lect. Notes Math., vol. 163. Springer, New York (1970)
Edmundo, M.J., Prelli, L.: Sheaves on \(\cal{T}\)-topologies. J. Math. Soc. Jpn. 68(1), 347–381 (2016)
Fiorot, L., Monteiro Fernandes, T., Sabbah, C.: Relative regular Riemann–Hilbert correspondence. Proc. Lond. Math. Soc. 122(3), 434–457 (2021)
Kashiwara, M.: The Riemann-Hilbert problem for holonomic systems. Publ. RIMS Kyoto Univ. 20, 319–365 (1984)
Kashiwara, M.: \(D\)-Modules and Microlocal Calculus, Translations of Mathematical Monographs, vol. 217. American Mathematical Society, Providence, R.I. (2003)
Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292. Springer, Berlin, Heidelberg (1990)
Kashiwara, M., Schapira, P.: Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. France (N.S.), vol. 64. Société Mathématique de France, Paris (1996)
Kashiwara, M., Schapira, P.: Ind-sheaves, Astérisque, vol. 271. Société Mathématique de France, Paris (2001)
Kashiwara, M., Schapira, P.: Categories and Sheaves, Grundlehren Math. Wiss., vol. 332. Springer, Berlin, Heidelberg (2006)
Schapira, P.: Vanishing of temperate cohomology on complex manifolds (2021). arXiv:2003.11361 [math] (to appear in Annales Henri Lebesgue, 2021)
Monteiro Fernandes, T., Prelli, L.: Relative subanalytic sheaves. Fund. Math. 226(1), 79–100 (2014)
Monteiro Fernandes, T., Sabbah, C.: On the de Rham complex of mixed twistor \(\cal{D} \)-modules. Int. Math. Res. Not. 21, 4961–4984 (2013)
Monteiro Fernandes, T., Sabbah, C.: Riemann–Hilbert correspondence for mixed twistor \(\cal{D}\)-modules. J. Inst. Math. Jussieu 18(3), 629–672 (2019)
Prelli, L.: Sheaves on subanalytic sites. Rend. Sem. Mat. Univ. Padova. 120, 167–216 (2008)
Prosmans, F.: Derived limits in quasi-abelian categories. Bull. Soc. R. Sci. Liège. 68(5–6), 335–401 (1999)
Tamme, G.: Introduction to étale Cohomology. Universitext Springer-Verlag, Berlin (1994)
Wilkie, A.: Covering definable open subsets by open cells. In: Edmundo, M., Richardson, D., Wilkie, A. (eds.) O-minimal Structures, Proceedings of the RAAG Summer School Lisbon 2003, Lecture Notes in Real Algebraic and Analytic Geometry. Cuvillier Verlag (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research of T. Monteiro Fernandes was supported by Fundação para a Ciência e Tecnologia, under the project: UIDB/04561/2020. The second author is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)
Rights and permissions
About this article
Cite this article
Monteiro Fernandes, T., Prelli, L. Relative Subanalytic Sheaves II. Milan J. Math. 89, 387–411 (2021). https://doi.org/10.1007/s00032-021-00344-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00032-021-00344-9