Skip to main content
Log in

Relative Subanalytic Sheaves II

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We give a new construction of sheaves on a relative site associated to a product \(X \times S\) where S plays the role of a parameter space, expanding the previous construction by the same authors, where the subanalytic structure on S was required. Here we let this last condition fall. In this way the construction becomes much easier to apply when the dimension of S is bigger than one. We also study the functorial properties of base change with respect to the parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deligne, P.: Équations différentielles à points singuliers réguliers. Lect. Notes Math., vol. 163. Springer, New York (1970)

  2. Edmundo, M.J., Prelli, L.: Sheaves on \(\cal{T}\)-topologies. J. Math. Soc. Jpn. 68(1), 347–381 (2016)

    Article  MathSciNet  Google Scholar 

  3. Fiorot, L., Monteiro Fernandes, T., Sabbah, C.: Relative regular Riemann–Hilbert correspondence. Proc. Lond. Math. Soc. 122(3), 434–457 (2021)

    Article  MathSciNet  Google Scholar 

  4. Kashiwara, M.: The Riemann-Hilbert problem for holonomic systems. Publ. RIMS Kyoto Univ. 20, 319–365 (1984)

  5. Kashiwara, M.: \(D\)-Modules and Microlocal Calculus, Translations of Mathematical Monographs, vol. 217. American Mathematical Society, Providence, R.I. (2003)

    Google Scholar 

  6. Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292. Springer, Berlin, Heidelberg (1990)

  7. Kashiwara, M., Schapira, P.: Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. France (N.S.), vol. 64. Société Mathématique de France, Paris (1996)

  8. Kashiwara, M., Schapira, P.: Ind-sheaves, Astérisque, vol. 271. Société Mathématique de France, Paris (2001)

    MATH  Google Scholar 

  9. Kashiwara, M., Schapira, P.: Categories and Sheaves, Grundlehren Math. Wiss., vol. 332. Springer, Berlin, Heidelberg (2006)

  10. Schapira, P.: Vanishing of temperate cohomology on complex manifolds (2021). arXiv:2003.11361 [math] (to appear in Annales Henri Lebesgue, 2021)

  11. Monteiro Fernandes, T., Prelli, L.: Relative subanalytic sheaves. Fund. Math. 226(1), 79–100 (2014)

    Article  MathSciNet  Google Scholar 

  12. Monteiro Fernandes, T., Sabbah, C.: On the de Rham complex of mixed twistor \(\cal{D} \)-modules. Int. Math. Res. Not. 21, 4961–4984 (2013)

    Article  MathSciNet  Google Scholar 

  13. Monteiro Fernandes, T., Sabbah, C.: Riemann–Hilbert correspondence for mixed twistor \(\cal{D}\)-modules. J. Inst. Math. Jussieu 18(3), 629–672 (2019)

  14. Prelli, L.: Sheaves on subanalytic sites. Rend. Sem. Mat. Univ. Padova. 120, 167–216 (2008)

    Article  MathSciNet  Google Scholar 

  15. Prosmans, F.: Derived limits in quasi-abelian categories. Bull. Soc. R. Sci. Liège. 68(5–6), 335–401 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Tamme, G.: Introduction to étale Cohomology. Universitext Springer-Verlag, Berlin (1994)

    Book  Google Scholar 

  17. Wilkie, A.: Covering definable open subsets by open cells. In: Edmundo, M., Richardson, D., Wilkie, A. (eds.) O-minimal Structures, Proceedings of the RAAG Summer School Lisbon 2003, Lecture Notes in Real Algebraic and Analytic Geometry. Cuvillier Verlag (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Prelli.

Additional information

The research of T. Monteiro Fernandes was supported by Fundação para a Ciência e Tecnologia, under the project: UIDB/04561/2020. The second author is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro Fernandes, T., Prelli, L. Relative Subanalytic Sheaves II. Milan J. Math. 89, 387–411 (2021). https://doi.org/10.1007/s00032-021-00344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-021-00344-9

Keywords

Mathematics Subject Classification

Navigation