Skip to main content
Log in

A Continuous Dependence Result for a Dynamic Debonding Model in Dimension One

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we address the problem of continuous dependence on initial and boundary data for a one-dimensional dynamic debonding model describing a thin film peeled away from a substrate. The system underlying the process couples the (weakly damped) wave equation with a Griffith’s criterion which rules the evolution of the debonded region. We show that under general convergence assumptions on the data the corresponding solutions converge to the limit one with respect to different natural topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bucur, D., Buttazzo, G., Lux, A.: Quasistatic evolution in debonding problems via capacitary methods. Arch. Rational Mech. Anal. 190, 281–306 (2008)

    Article  MathSciNet  Google Scholar 

  2. Burridge, R., Keller, J.B.: Peeling, slipping and cracking - some one-dimensional free boundary problems in mechanics. SIAM Review 20, 31–61 (1978)

    Article  MathSciNet  Google Scholar 

  3. Caponi, M.: Linear hyperbolic systems in domains with growing cracks. Milan J. of Mathematics 85, 149–185 (2017)

    Article  MathSciNet  Google Scholar 

  4. Dal Maso, G., Lazzaroni, G., Nardini, L.: Existence and uniqueness of dynamic evolutions for a peeling test in dimension one. J. Differential Equations 261, 4897–4923 (2016)

    Article  MathSciNet  Google Scholar 

  5. Dal Maso, G., Lucardesi, I.: The wave equation on domains with cracks growing on a prescribed path: existence, uniqueness, and continuous dependence on the data. Applied Mathematics Research eXpress 2017, 184–241 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Dumouchel, P.-E., Marigo, J.-J., Charlotte, M.: Rupture dynamique et fissuration quasi-static instable. Comptes Rendus Mécanique 335, 708–713 (2007)

    Article  Google Scholar 

  7. Dumouchel, P.-E., Marigo, J.-J., Charlotte, M.: Dynamic fracture: an example of convergence towards a discontinuous quasistatic solution. Contin. Mech. Thermodyn. 20, 1–19 (2008)

    Article  MathSciNet  Google Scholar 

  8. Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge, Cambridge Monographs on Mechanics and Applied Mathematics (1990)

    Book  Google Scholar 

  9. Hellan, K.: Debond dynamics of an elastic strip-I. Timoshenko beam properties and steady motion, International Journal of Fracture 14, 91–100 (1978)

    Google Scholar 

  10. Hellan, K.: Debond dynamics of an elastic strip-II. Simple transient motion, International Journal of Fracture 14, 173–184 (1978)

    Google Scholar 

  11. Hellan, K.: Introduction to Fracture Mechanics. McGraw-Hill, New York (1984)

    Google Scholar 

  12. C.J. Larsen, Models for dynamic fracture based on Griffith's criterion, in: IUTAM Symp. on Variational Concepts with Applications to the Mechanics of Materials (K. Hackl, ed.), Springer, 2010, pp. 131–140

  13. Lazzaroni, G., Bargellini, R., Dumouchel, P.-E., Marigo, J.-J.: On the role of kinetic energy during unstable propagation in a heterogeneous peeling test. Int. J. Fract. 175, 127–150 (2012)

    Article  Google Scholar 

  14. Lazzaroni, G., Nardini, L.: Analysis of a dynamic peeling test with speeddependent toughness. SIAM J. Appl. Math. 78, 1206–1227 (2018)

    Article  MathSciNet  Google Scholar 

  15. Lazzaroni, G., Nardini, L.: On the quasistatic limit of dynamic evolutions for a peeling test in dimension one. J. Nonlinear Sci. 28, 269–304 (2018)

    Article  MathSciNet  Google Scholar 

  16. G. Lazzaroni and L. Nardini, On the 1d wave equation in time-dependent domains and the problem of debond initiation, Preprint SISSA 56/2017/MATE

  17. Maddalena, F., Percivale, D., Tomarelli, F.: Adhesive flexible material structures. Discr. Continuous Dynamic. Systems B 17(2), 553–574 (2012)

    Article  MathSciNet  Google Scholar 

  18. Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Application, Applied Mathematical Sciences, vol. 193. Springer, New York (2015)

    Book  Google Scholar 

  19. F. Riva and L. Nardini, Existence and uniqueness of dynamic evolutions for a onedimensional debonding model with damping, Preprint SISSA 28/2018/MATE

Download references

Acknowledgment

The author wishes to thank Prof. Gianni Dal Maso for many helpful discussions on the topic. The author is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Riva.

Additional information

Publishers Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riva, F. A Continuous Dependence Result for a Dynamic Debonding Model in Dimension One. Milan J. Math. 87, 315–350 (2019). https://doi.org/10.1007/s00032-019-00303-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-019-00303-5

Mathematics Subject Classification (2010)

Keywords

Navigation