Skip to main content
Log in

Analysis of a Dynamic Contact Problem for Electro-viscoelastic Materials

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a mathematical model which describes the dynamic process of contact between a piezoelectric body and an electrically conductive foundation. We model the material’s behavior with a nonlinear electro-viscoelastic constitutive law; the contact is frictionless and is described with the normal compliance condition. We derive variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field, the damage field and the adhesion field. We prove the existence of a unique weak solution to the problem. The proof is based on arguments of time dependent variational inequalities, parabolic inequalities, differential equations and fixed point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batra R.C., Yang J.S.: Saint Venant’s principle in linear piezoelectricity. Journal of Elasticity 38, 209–218 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barboteu M., Fernández J.R., Ouafik Y.: Numerical analysis of a frictionless viscoelastic piezoelectric contact problem. ESAIM: M2AN 42, 667–682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barboteu M., Fernández J.R., Tarraf R.: Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity, Annales de l’Institut Fourier Comput Methods. Appl. Mech. Engrg. 197, 3724–3732 (2008)

    Article  MATH  Google Scholar 

  4. Chau O., Fernández J.R., Shillor M., Sofonea M.: Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. J. Comput. Appl. Math. 159, 431–465 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chau O., Shillor M., Sofonea M.: Dynamic frictionless contact with adhesion. Z. Angew. Math. Phys 55, 32–47 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chau O., Fernández J.R., Han W., Sofonea M.: A frictionless contact problem for elasticvisco-plastic materials with normal compliance and damage. Comput. Methods Appl. Mech. Eng. 191, 5007–5026 (2002)

    Article  MATH  Google Scholar 

  7. Campo M., Fernandez J.R., Kuttler K.L., Shillor M., Vianõ J.M.: Numerical analysis and simulations of a dynamic frictionless contact problem with damage. Comput. Methods Appl. Mech. Eng. 196, 476–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Duvaut and J.L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, 1976.

  9. Frémond M., Nedjar B.: Damage in concrete: the unilateral phenomenon. Nuclear Engng. Design 156, 323–335 (1995)

    Article  Google Scholar 

  10. Frémond M., Nedjar B.: Damage, Gradient of Damage and Principle of Virtual Work. Int. J. Solids Structures 33(8), 1083–1103 (1996)

    Article  MATH  Google Scholar 

  11. Frémond M., Kuttler K.L., Nedjar B.: One-dimensional models of damage. Math. Sci. Appl 8(2), 541–570 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Frémond M., Kuttler K.L., Nedjar B., Shillor M.: One-dimensional models of damage. Adv. Math. Sci. Appl 8(2), 541–570 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Fernandez-García J.R., Sofonea M., Viaňo J.M.: A Frictionless Contact Problem for Elastic-Viscoplastic Materials with Normal Compliance. Numerische Mathemätik 90, 689–719 (2002)

    Article  MATH  Google Scholar 

  14. Han W., Sofonea M., Kazmi K.: Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials. Comput. Methods Appl. Mech. Engrg. 196, 3915–3926 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mindlin R.D.: Polarisation gradient in elastic dielectrics. Int. J. Solids Structures 4, 637–663 (1968)

    Article  MATH  Google Scholar 

  16. Mindlin R.D.: Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Int. J. Solids 4, 1197–1213 (1969)

    Article  Google Scholar 

  17. Mindlin R.D.: Elasticity, Piezoelectricity and Cristal lattice dynamics. J. of Elasticity 4, 217–280 (1972)

    Article  Google Scholar 

  18. Nečas. J., Hlavaček I.: Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction. Elsevier, Amsterdam (1981)

    MATH  Google Scholar 

  19. Raous M., Cangémi L., Cocu M.: A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Eng. 177, 383–399 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rojek J., Telega J.J.: Contact problems with friction, adhesion and wear in orthopaedic biomechanics. I: General developments. J. Theor. Appl. Mech. 39, 655–677 (2001)

    MATH  Google Scholar 

  21. J. Rojek, J.J.Telega, and S. Stupkiewicz, Contact problems with friction, adherence and wear in orthopaedic biomechanics. II: Numerical implementation and application to implanted knee joints, J. Theor. Appl. Mech. 39 (2001).

  22. Selmani L., Bensebaa N.: An Electro-viscoelastic Contact Problem with Adhesion and Damage. Rend. Sem. Mat. Univ. Pol. Torino 66(2), 151–171 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Shillor M., Sofonea M., Telega J.J.: Models and Analysis of Quasistatic Contact Lecture Notes in Physics 655. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  24. Sofonea M., Essoufi El-H.: Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl. 14(1), 613–631 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Sofonea M., Han W., Shillor M.: Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, Vol. 276. Chapman Hall/CRC Press, New York (2006)

    MATH  Google Scholar 

  26. Tengiz B., Tengiz G.: Some Dynamic of the Theory of Electroelasticity. Memoirs on Differential Equations and Mathematical Physics 10, 1–53 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Toupin R.A.: The elastic dielectrics. J. Rat. Mech. Analysis 5, 849–915 (1956)

    MathSciNet  MATH  Google Scholar 

  28. R.A. Toupin; A dynamical theory of elastic dielectrics, Int. J. Engrg. Sci. 1 (1963).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azeb Ahmed Abdelaziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souraya, B., Abdelaziz, A.A. Analysis of a Dynamic Contact Problem for Electro-viscoelastic Materials. Milan J. Math. 86, 105–124 (2018). https://doi.org/10.1007/s00032-018-0282-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-018-0282-4

Mathematics Subject Classification (2010)

Keywords

Navigation