Skip to main content
Log in

Representing Superoscillations and Narrow Gaussians with Elementary Functions

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

A simple addition to the collection of superoscillatory functions is constructed, in the form of a square-integrable sinc function which is band-limited yet in some intervals oscillates faster than its highest Fourier component. Two parameters enable tuning of the local frequency of the superoscillations and the length of the interval over which they occur. Away from the superoscillatory intervals, the function rises to exponentially large values. An integral transform generates other band-limited functions with arbitrarily narrow peaks that are locally Gaussian. In the (delicate) limit of zero width, these would be Dirac delta-functions, which by superposition could enable construction of band-limited functions with arbitrarily fine structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schelkunoff S. A. (1943) A Mathematical Theory of Linear Arrays Bell. Syst. Tech. J. 22: 80–107

    Article  MATH  Google Scholar 

  2. Hansen, R. C.,1983, Linear Arrays in The Handbook of Antenna Design, Volume 2 eds. Rudge, A. W., Milne, K., Olver, A. D. & Knight, P. (Peter Peregrinus, London), pp. 1–134.

  3. Cox, H., Zeskind, R. M. & Kooij, T.,1986, Practical Supergain IEEE Trans. Acoustics, Speech and Signal Processing ASSP-34, 393–398

  4. Haviland R. P. (1995) Supergain Antennas: Possibilities and Problems. IEEE Antennas & Propagation Magazine 37: 13–26

    Article  Google Scholar 

  5. Berry, M. V.,2013, Superoscillations, endfire and supergain in Quantum Theiory: a Two-time Success Story: Yakir Aharonov Festschrift eds. Struppa, D. & Tollaksen, J. (Springer, New York), pp. 327–336.

  6. Toraldo di Francia G. (1952) SuperGain Antennas and Optical Resolving Power. Nuovo Cimento Suppl. 9: 426–438

    Article  Google Scholar 

  7. Leiserson I., Lipson S.G., Sarafis V. (2000) Superresolution in far-field imaging. Opt. Lett. 25: 209–211

    Article  Google Scholar 

  8. Bucklew J.A., Saleh B.E.A. (1985) Theorem for high-resolution high-contrast image synthesis. J. Opt. Soc. Amer. A 2: 1233–1236

    Article  MathSciNet  Google Scholar 

  9. Nashold K.M., Buckew J.A., Rudin W., Saleh B.E.A. (1989) Synthesis of binary images from band-limited functions. J. Opt. Soc. Amer. A 6: 852–858

    Article  MathSciNet  Google Scholar 

  10. Rogers E.T.F., Lindberg J., Roy T., Savo S., Chad J.E., Dennis M.R., Zheludev N. I. (2012) A super-oscillatory lens optical microscope for subwavelength imaging. Nature Materials 11: 432–435

    Article  Google Scholar 

  11. Aharonov Y., Albert D.Z., Vaidman L. (1988) How the result of a measurement of a component of the spin of a spin 1/2 particle can turn out to be 100. Phys. Rev. Lett. 60: 1351–1354

    Article  Google Scholar 

  12. Aharonov, Y., Popescu, S. & Rohrlich, D.,1990, How can an infra-red photon behave as a gamma ray? Tel-Aviv University Preprint TAUP, 1847–1890

  13. Popescu, S.,1991, Multi-time and non-local measurements in quantum mechanics, in Ph.D. thesis, Physics (Tel-Aviv).

  14. Aharonov Y., Popescu S., Tollaksen J. (2010) A time-symmetric formulation of quantum mechanics. Physics Today 63: issue 11, 27–33

    Article  Google Scholar 

  15. Berry, M. V.,1994, Faster than Fourier in Quantum Coherence and Reality; in celebration of the 60th Birthday of Yakir Aharonov eds. Anandan, J. S. & Safko, J. L. (World Scientific, Singapore), pp. 55–65.

  16. Calder, M. S. & Kempf, A.,2005, Analysis of superoscillatory wave functions J. Math. Phys. 46, 012101–1–18

  17. Ferreira P.J.S.G., Kempf A. (2006) Superoscillations: faster than the Nyquist rate. IEEE Trans. Signal Processing 54: 3732–3740

    Article  Google Scholar 

  18. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D. C. & Tollaksen, J.,2011, Some mathematical properties of superoscillations J. Phys. A 44, 365304 (16pp)

  19. Katzav E., Schwartz M. (2013) Yield-Optimised Superoscillations. IEEE Trans. Signal Processing 61: 3113–3118

    Article  Google Scholar 

  20. Berry M.V., Popescu S. (2006) Evolution of quantum superoscillations, and optical superresolution without evanescent waves. J.Phys.A. 39: 6965–6977

    Article  MathSciNet  MATH  Google Scholar 

  21. Berry M.V. (1994) Evanescent and real waves in quantum billiards, and Gaussian Beams. J. Phys. A 27: L391–L398

    Article  MathSciNet  MATH  Google Scholar 

  22. Berry, M. V.,2013, A note on superoscillations associated with Bessel beams J.Opt. 15, 044006 (5pp)

  23. Makris K.G., Psaltis D. (2011) Superoscillatory diffraction-free beams. Opt. Lett. 36: 4335–4337

    Article  Google Scholar 

  24. Berry, M. V.,2013, Exact nonparaxial transmission of subwavelength detail using superoscillations J. Phys. A 46, 205203 (15pp)

  25. Deschamps G.A. (1971) Gaussian beam as a bundle of complex rays. Electronics Lett. 7: 684–685

    Article  Google Scholar 

  26. Siegman, A. E.,1986, Lasers (University Science Books, Mill Valley)

  27. DLMF,2010, NIST Handbook of Mathematical Functions (University Press, Cambridge) http://dlmf.nist.gov.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.V. Berry.

Additional information

I thank Professors Fabrizio Colombo and Irene Sabadini for questions that stimulated this work, and the Centre for Disruptive Technologies of Nanyang Technological University, Singapore, and Macquarie University, Australia, for generous hospitality while this paper was written. My research is supported by the Leverhulme Trust.

Lecture given at the Seminario Matematico e Fisico di Milano on February 24, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berry, M. Representing Superoscillations and Narrow Gaussians with Elementary Functions. Milan J. Math. 84, 217–230 (2016). https://doi.org/10.1007/s00032-016-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-016-0256-3

Mathematics Subject Classification

Keywords

Navigation