Skip to main content
Log in

The Role of Surface Diffusion in Dynamic Boundary Conditions: Where Do We Stand?

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this study, we investigate reaction-diffusion and elliptic-like equations with two classes of dynamic boundary conditions, of reactive and reactive-diffusive type. We provide sharp upper and lower bounds on the dimension of the global attractor in all these cases. In particular, we emphasize how surface diffusion can act as a damping force in reducing the degree of complexity in these systems. We obtain a new Weyl asymptotic law for eigenvalue sequences associated with a family of perturbed Wentzell operators which is of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Amann, Existence and regularity for semilinear parabolic evolution equations, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 11, no 4, (1984), 593–676

  2. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birman M.Š., Solomjak M.Z.: Spectral asymptotics of nonsmooth elliptic operators. I, Trans. Moscow Math. Soc. 28, 1–32 (1973)

    Google Scholar 

  4. P. Berard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, 1207 (1986)

  5. P. Buser, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2010. Reprint of the 1992 edition

  6. Babin A., Vishik M.: Attractors of Evolutionary Equations. Nauka, Moscow (1989)

    Google Scholar 

  7. G.M. Coclite, A. Favini, G.R. Goldstein, J.A. Goldstein, E. Obrecht, S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis, In: S. Sivasundaran. Advances in Nonlinear Analysis: Theory, Methods and Applications. vol. 3, p. 279–292, Cambridge, Cambridge Scientific Publishers Ltd., ISBN/ISSN: 1-904868-68-2

  8. I. Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115. Academic Press, Inc., Orlando, FL, 1984

  9. J.W. Cholewa, T. Dlotko, Global attractors in abstract parabolic problems, London Mathematical Society Lecture Note Series 278, Cambridge University Press, Cambridge, 2000

  10. Chepyzhov V., Vishik M.: Attractors for Equations of Mathematical Physics.. AMS, Providence, RI (2002)

    Google Scholar 

  11. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 4, Springer, Berlin, 1990

  12. N. Dunford, J. Schwartz, Linear Operators II, Wiley Interscience, 1963

  13. Escher J.: Nonlinear elliptic systems with dynamic boundary conditions. Math. Z. 210, 413–439 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Favini A., Goldstein G.R., Goldstein J.A., Romanelli S.: The heat equation with generalized Wentzell boundary condition, J. Evol. Equ. 2(1), 1–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Favini, G.R. Goldstein, J.A. Goldstein, E. Obrecht, S. Romanelli, Elliptic operators with generalWentzell boundary conditions, analytic semigroups and the angle concavity theorem, Math. Nachr. 283 (2010), 504–521

  16. G. Francois, Comportement spectral asymptotique provenant de problèmes parabolique sous conditions au bord dynamiques, Doctoral Thesis, ULCO, Calais, 2002

  17. Gal C.G.: Sharp estimates for the global attractor of scalar reaction–diffusion equations with a Wentzell boundary condition. J. Nonlinear Sci. 22(1), 85–106 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gal C.G.: On a class of degenerate parabolic equations with dynamic boundary conditions. J. Differential Equations 253(1), 126–166 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gal C.G., Warma M.: Well-posedness and the global attractor of some quasilinear parabolic equations with nonlinear dynamic boundary conditions. Differential Integral Equations, 23, 327–358 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Gal C.G., Grasselli M.: The nonisothermal Allen-Cahn equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 22, 1009–1040 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gal C.G., Grasselli M.: On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Commun. Pure Appl. Anal. 8(2), 689–710 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gal C.G., Meyries M.: Nonlinear elliptic problems with dynamical boundary conditions of reactive and reactive-diffusive type. Proc. Lond. Math. Soc. 108(6), 1351–1380 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gal C.G., Warma M.: Existence of bounded solutions for a class of quasilinear elliptic systems on manifolds with boundary. J. Differential Equations 255(2), 151–192 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. C.G. Gal, M. Warma, Reaction–diffusion equations with fractional diffusion on nonsmooth domains with various boundary conditions, Disc. Cont. Dyn. Syst., Series A 36 (2016), accepted

  25. C.G. Gal, M. Warma, Transmission problems with nonlocal Wentzell type boundary conditions and rough dynamic interfaces, submitted

  26. G.R. Goldstein, General boundary conditions for parabolic and hyperbolic operators, in Interplay Between (C 0)-Semigroups and PDEs: Theory and Applications (ed. by S. Romanelli, R. M. Mininni and S. Lucente), Ist. Naz. Alta Matem., Rome, Italy (2004), 91–112

  27. Goldstein G.R.: Derivation of dynamical boundary conditions. Adv. Differential Equations 11, 457–480 (2006)

    MATH  MathSciNet  Google Scholar 

  28. Gal C.G., Shomberg J.: Coleman–Gurtin type equations with dynamic boundary conditions. Phys. D 292, 29–45 (2015)

    Article  MathSciNet  Google Scholar 

  29. J.K. Kennedy, On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditions, The University of Sydney, PhD Thesis, 2010

  30. L. Hörmander, Linear partial differential operators, Grundlehren Math. Wiss. 116, Springer-Verlag, Berlin, 1976

  31. Hörmander L.: The spectral function of an elliptic operator. Acta Math. 121, 193–218 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  32. Luo Y., Trudinger N.S.: Linear second order elliptic equations with Venttsel boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 118(3–4), 193–207 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Meyries, Maximal regularity in weighted spaces, nonlinear boundary conditions, and global attractors, PhD thesis, Karlsruhe Institute of Technology (KIT), 2010

  34. D. Mugnolo, S. Romanelli, Dirichlet forms for general Wentzell boundary conditions, analytic semigroups, and cosine operator functions, Electron. J. Differential Equations 2006, No. 118, 20 pp. (electronic)

  35. A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of differential equations: evolutionary equations, Vol. IV, 103200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008

  36. T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980

  37. McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  38. Peetre J.: Another approach to elliptic boundary value problems. Comm. Pure Appl. Math. 14, 711–731 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ladyzhenskaya O.A., Uraltseva N.N.: Linear and Quasilinear elliptic equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  40. L. Sandgren, A vibration problem, PhD Thesis, Lund. Univ. Mat. Sem. Band. 13 (1955), 1–84

  41. Sprekels J., Wu H.: A note on parabolic equation with nonlinear dynamical boundary condition. Nonlinear Anal. 72(6), 3028–3048 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. M.I. Visik, On general boundary problems for elliptic differential equations, (in Russian), Trudy Moskow. Math. Obsc. 1 (1952), 187–246; also in American Mathematical Society translations, vol. 2, nr. 24 (1963), 107–172

  43. Vazquez J.L., Vitillaro E.: On the Laplace equation with dynamical boundary conditions of reactive-diffusive type. Journal of Mathematical Analysis and Applications 354, 674–688 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Vitillaro E.: On the Laplace equation with non-linear dynamical boundary conditions. Proc. London Math. Soc. 93(2), 418–446 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  46. Wu H.: Convergence to equilibrium for the semilinear parabolic equation with dynamical boundary condition. Adv. Math. Sci. Appl. 17(1), 67–88 (2007)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian G. Gal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gal, C.G. The Role of Surface Diffusion in Dynamic Boundary Conditions: Where Do We Stand?. Milan J. Math. 83, 237–278 (2015). https://doi.org/10.1007/s00032-015-0242-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-015-0242-1

Mathematics Subject Classification

Keywords

Navigation