Skip to main content
Log in

Non-Commutative Harmonic Oscillators and Related Problems

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper is mainly meant to be a survey on the state-of-the-art of the understanding we have of a family of systems with polynomial coefficients, called non-commutative harmonic oscillators (NCHOs), that has shown itself to be very rich in structure. The study of this family has required, and is requiring, the study of problems arising from different parts of Mathematics, from spectral theory to the theory of modular forms, just to mention a few of them. On the side of new results, they will be concerned with the creation-annihilation relations for NCHOs and with Fredholm properties of operators belonging to certain global Weyl-Hörmander classes, of which NCHOs are a particular case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals R.: Weighted distribution spaces and pseudodifferential operators. J. Analyse Math. 39, 131–187 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bony J.-M., Chemin J.-Y.: Espaces fonctionnels associés au calcul de Weyl-Hörmander. Bull. Soc. Math. France 122, 77–118 (1994)

    MATH  MathSciNet  Google Scholar 

  3. Braak D.: Integrability of the Rabi model. Phys. Rev. Letter 107, 10040–110040 4 (2011)

    Article  Google Scholar 

  4. Brummelhuis R.: A counterexample to the Fefferman-Phong inequality for systems. C. R. Acad. Sci. Paris 310, 95–98 (1990)

    MATH  MathSciNet  Google Scholar 

  5. Brummelhuis R.: On Melin’s inequality for systems. Comm. Partial Differential Equations 26, 1559–1606 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Chazarain, Fomule de Poisson pour les variétes riemanniennes. Invent. Math. 24 (1974), 65–82.

  7. Colinde Verdière Y.: Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes periodiques. Comment. Math. Helvetici 54, 508–522 (1979)

    Article  Google Scholar 

  8. M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Math. Soc. Lecture Note Ser. 268. Cambridge University Press, 1999.

  9. Duistermaat J. J., Guillemin V.: The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristics. Invent. Math. 29, 39–79 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fefferman C.: The uncertainty principle. Bull. Amer. Math. Soc. (N.S.) 9, 129–206 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques. Astérisque 112, Soc. Math. de France, Paris, 1984.

  12. Hirokawa M.: The Dicke-type transition for non-commutative harmonic oscillator in the light of cavity QED. Sūrikaisekikenkyūsho Kōkyūroku 1607, 93–112 (2008)

    Google Scholar 

  13. Hirokawa M.: The Dicke-type crossings among eigenvalues of differential operators in a class of non-commutative harmonic oscillators. Indiana Univ. Math. J. 58, 1493–1535 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hiroshima F., Sasaki I.: Multiplicity of the lowest eigenvalue of non-commutative harmonic oscillators. Kyushu J. Math. 67, 355–366 (2013)

    Article  MathSciNet  Google Scholar 

  15. F. Hiroshima and I. Sasaki, Spectral analysis of non-commutative harmonic oscillators: the lowest eigenvalue and no crossing. Preprint 2013. To appear in J. Math. Anal. Appl.

  16. L. Hörmander, The Cauchy problem for differential equations with double characteristics. J. Anal. Math. 32 (1977), 118–196.

    Google Scholar 

  17. L. Hörmander, The Weyl calculus of pseudodifferential operators. Comm. Pure Appl. Math. 32 (1979), 360–444.

  18. L. Hörmander, On the asymptotic distribution of the eigenvalues of pseudodifferential operators in \({\mathbb{R}^n}\). Ark. Mat. 17 (1979), 297-313.

    Google Scholar 

  19. L. Hörmander, The analysis of partial differential operators. III. Pseudodifferential operators. Grundlehren der Mathematischen Wissenschaften, 274. Springer-Verlag, Berlin, 1985. viii+525 pp.

  20. Hörmander L.: Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z. 219, 413–449 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ichinose T., Wakayama M.: Zeta functions for the spectrum of the non-commutative harmonic oscillators. Comm. in Math. Phys. 258, 697–739 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Ichinose and M. Wakayama, Special values of the spectral zeta function of the noncommutative harmonic oscillator and confluent Heun equations. Kyushu J. Math. 59 No. 1 (2005), 39–100.

    Google Scholar 

  23. Ichinose T., Wakayama M.: On the spectral zeta function for the noncommutative harmonic oscillator. Rep. Math. Phys. 59, 421–432 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. V. Ivrii, Microlocal analysis and precise spectral asymptotics. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. xvi+731 pp.

  25. I. Kamotski and M. Ruzhansky, Regularity properties, representation of solutions, and spectral asymptotics of systems with multiplicities. Comm. Partial Differential Equations 32 (2007), 1–35.

  26. T. Kato, Perturbation theory for linear operators. Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995. xxii+619 pp.

  27. K. Kimoto and M.Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators. Kyushu J. Math. 60 (2006), 383–404

    Google Scholar 

  28. K. Kimoto and M. Wakayama, Elliptic curves arising from the spectral zeta function for non-commutative harmonic oscillators and Γ0(4)-modular forms. The Conference on L-Functions, 201218, World Sci. Publ., Hackensack, NJ, 2007.

  29. K. Kimoto and M. Wakayama, Spectrum of non-commutative harmonic oscillators and residual modular forms. Noncommutative Geometry and Physics 3. World Scientific 2013; 237–267.

  30. B. V. Lange and V. S. Rabinovich, Pseudodifferential operators on \({\mathbb{R}^n}\) and limit operators. Mat. Sb. 129 (1986), 175–185; English translation: Math. USSR-Sb. 57 (1987), 183–194.

  31. N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators. Pseudo-Differential Operators. Theory and Applications, 3. Birkhäuser Verlag, Basel, 2010. xii+397 pp.

  32. K. Nagatou, M. T. Nakao and M.Wakayama, Verified numerical computations for eigenvalues of non-commutative harmonic oscillators. Numerical Funct. Analysis and Opt. 23 (2002), 633–650.

  33. Ochiai H.: Non-commutative harmonic oscillators and Fuchsian ordinary differential operators. Comm. in Math. Phys. 217, 357–373 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ochiai H.: Non-commutative harmonic oscillators and the connection problem for the Heun differential equation. Letters in Math. Phys. 70, 133–139 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ochiai H.: A special value of the spectral zeta function of the non-commutative harmonic oscillators. Ramanujan J. 15, 31–36 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Parenti, Sistemi iperbolici e relazioni di Poisson. Seminario di Analisi Matematica, Dipartimento di Matematica dell’Unviersità di Bologna, A.A. 1986–87, Bologna, XVII. 1– XVII 12.

  37. Parenti C., Parmeggiani A.: Lower bounds for systems with double characteristics. J. Analyse Math. 86, 49–91 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Parmeggiani, On lower bounds of pseudodifferential systems. Hyperbolic problems and related topics, 269–293, Grad. Ser. Anal., Int. Press, Somerville, MA, 2003.

  39. Parmeggiani A.: A class of counterexamples to the Fefferman-Phong inequality for systems. Comm. Partial Differential Equations 29, 1281–1303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Parmeggiani A.: On the spectrum and the lowest eigenvalue of certain non-commutative harmonic oscillators. Kyushu Journal of Mathematics 58, 277–322 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Parmeggiani A.: On the spectrum of certain noncommutative harmonic oscillators. Annali dell’Università di Ferrara 52, 431–456 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Parmeggiani A.: On positivity of certain systems of partial differential equations. Proc. Natl. Acad. Sci. USA 104, 723–726 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Parmeggiani, On the Fefferman-Phong inequality for systems of PDEs. A. Bove- F. Colombini-D. Del Santo Editors. Progress in Nonlinear Differential Equations and Their Applications 69, Birkäuser-Verlag Boston (2006), 247–266.

  44. Parmeggiani A.: On the spectrum of certain non-commutative harmonic oscillators and semiclassical analysis. Comm. in Math. Phys. 279, 285–308 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. A. Parmeggiani, Spectral theory of non-commutative harmonic oscillators: an introduction. Lecture Notes in Mathematics, 1992. Springer-Verlag, Berlin, 2010. xii+254 pp.

  46. A. Parmeggiani, A remark on the Fefferman-Phong inequality for 2 × 2 systems. Pure Appl. Math. Q. 6 (2010), Special Issue: In honor of Joseph J. Kohn. Part 2, 1081–1103.

  47. A. Parmeggiani, On the problem of positivity of pseudodifferential systems. M. Cicognani- F. Colombini-D. Del Santo Editors. Progress in Nonlinear Differential Equations and Their Applications 84, Birkäuser Springer Science+Business Media New York (2013), 313–335.

  48. Parmeggiani A., Venni A.: On the essential spectrum of certain non-commutative oscillators. J. Math. Phys. 52((12), 121507–112150710 (2013)

    Article  MathSciNet  Google Scholar 

  49. Parmeggiani A., Wakayama M.: Oscillator representations and systems of ordinary differential equations. Proceedings of the National Academy of Sciences U.S.A. 98, 26–30 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Parmeggiani and M.Wakayama, Non-commutative harmonic oscillators-I, -II. Forum Mathematicum 14 (2002), 539–604 ibid. 669–690.

  51. D. Robert, Propriétés spectrales d’opérateurs pseudodifferentiels. Comm. Partial Differrential Equations 3 (1978), 755–826.

  52. M. Shubin, Pseudodifferential operators and spectral theory. Second edition. Springer- Verlag, Berlin, 2001. xii+288 pp.

  53. L.-Y. Sung, Positivity of a system of differential operators. J. Differential Equations 66 (1987), 71–89.

    Google Scholar 

  54. Taniguchi S.: The heat semigroup and kernel associated with certain non-commutative harmonic oscillators. Kyushu Journal of Mathematics 62, 63–68 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. Taylor M.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)

    MATH  Google Scholar 

  56. M. Wakayama, Simplicity of the lowest eigenvalue of non-commutative harmonic oscillators and the Riemann scheme of a certain Heun’s differential equation. Proceedings of the Japan Academy of Sciences, 89. Ser. A, Mathematical Sciences (2013), 69–73.

  57. M. Wakayama, Equivalence between the eigenfunction problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun’s differential equations, the eigenstates degeneration and Rabi’s model. Preprint 2013.

  58. Weinstein A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44, 883–892 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Parmeggiani.

Additional information

Lecture given in the Seminario Matematico e Fisico di Milano on May 7, 2012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmeggiani, A. Non-Commutative Harmonic Oscillators and Related Problems. Milan J. Math. 82, 343–387 (2014). https://doi.org/10.1007/s00032-014-0220-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-014-0220-z

Mathematics Subject Classification (2010)

Keywords

Navigation