Milan Journal of Mathematics

, Volume 80, Issue 2, pp 469–501 | Cite as

An ALE ESFEM for Solving PDEs on Evolving Surfaces



Numerical methods for approximating the solution of partial differential equations on evolving hypersurfaces using surface finite elements on evolving triangulated surfaces are presented. In the ALE ESFEM the vertices of the triangles evolve with a velocity which is normal to the hypersurface whilst having a tangential velocity which is arbitrary. This is in contrast to the original evolving surface finite element method in which the nodes move with a material velocity. Numerical experiments are presented which illustrate the value of choosing the arbitrary tangential velocity to improve mesh quality. Simulations of two applications arising in material science and biology are presented which couple the evolution of the surface to the solution of the surface partial differential equation.

Mathematics Subject Classification (2010)

Primary 65M60 65M15 Secondary 35K99 35R01 35R37 76R99 


Surface finite elements ALE advection diffusion equation interface motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adalsteinsson D ., Sethian J.A: Transport and diffusion of material quantities on propagating interfaces via level set methods. Journal of Computational Physics. 185, 271–288 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Barreira R, Elliott C, Madzvamuse A: The surface finite element method for pattern formation on evolving biological surfaces. Journal of Mathematical Biology. 63, 1095–1119 (2011)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    J. W. Barrett and C. M. Elliott, A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes, IMA Journal of Numerical Analysis, 4 (1984), pp. 309–325.Google Scholar
  4. 4.
    Barrett J. W., Garcke H., Nürnberg R.: On the variational approximation of combined second and fourth order geometric evolution equations. SIAM J. Sci. Comput., 29, 1006–1041 (2007)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    J. W. Barrett, H. Garcke, and R. Nürnberg , A parametric finite element mthod for fourth order geometric evolution equations, J. Comp. Phys., 222 (2007), pp. 441–467.Google Scholar
  6. 6.
    J. W. Barrett, H. Garcke, and R. Nürnberg, Numerical approximation of anisotropic geometric evolution equations in the plane, IMA J. Numer. Anal., 28 (2008), pp. 292–330.Google Scholar
  7. 7.
    J. W. Barrett, H. Garcke, and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in R3, J. Comp. Phys., 227 (2008), pp. 4281–4307.Google Scholar
  8. 8.
    M. J. Berger, D. A. Calhoun, C. Helzel, and R. J. Leveque, adaptive refinement on the sphere logically rectangular finite volume methods with adaptive refinement on the sphere, Philosophical Transactions of the Royal Society of London A, 367 (2009), pp. 4483–4496.Google Scholar
  9. 9.
    M. Bertalmío, L.-T. Cheng, S. J. Osher, and G. Sapiro, Variational problems and partial differential equations on implicit surfaces, J. Comput. Phys., 174 (2001), pp. 759–780.Google Scholar
  10. 10.
    Cahn J.W., Fife P, Penrose O.: A phase-field model for diffusion-induced grain-boundary motion. Acta Materialia. 45, 4397–4413 (1997)CrossRefGoogle Scholar
  11. 11.
    D. A. Calhoun and C. Helzel, A finite volume method for solving parabolic equations on logically cartesian curved surface meshes, SIAM J. Sci. Comput., 31 (2009), pp. 4066–4099.Google Scholar
  12. 12.
    M. A. J. Chaplain, M. Ganesh, and I. G. Graham, Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth, Journal of Mathematical Biology, 42 (2001), pp. 387–423.Google Scholar
  13. 13.
    E. J. Crampin, E. A. Gaffney, and P. K. Maini, Reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bull. Math. Biology, 61 (1999), pp. 1093–1120.Google Scholar
  14. 14.
    K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numerica, 14 (2005), pp. 139–232.Google Scholar
  15. 15.
    K. Deckelnick, G. Dziuk, C. M. Elliott, and C.-J. Heine, An h-narrow band finite element method for implicit surfaces, IMA J. Numer. Anal., 30 (2010), pp. 351–376.Google Scholar
  16. 16.
    K. Deckelnick and C. Elliott, An existence and uniqueness result for a phase-field model of diffusion-induced grain-boundary motion, Proc. R. Soc. Edin., 131A (2001), pp. 1323–1344.Google Scholar
  17. 17.
    K. Deckelnick and C. M. Elliott, Finite element error bounds for curve shrinking with prescribed normal contact to a fixed boundary, IMA J. Numer. Anal., 18 (1998), pp. 635–654.Google Scholar
  18. 18.
    K. Deckelnick, C. M. Elliott, and V. Styles, Numerical diffusion-induced grain boundary motion, Interfaces and Free Boundaries, 6 (2001), pp. 329–349.Google Scholar
  19. 19.
    A. Dedner, P. Madhaven, and B. Stinner, Analysis of the discontinuous Galerkin method for elliptic problems on surfaces, IMA J. Numer. Anal., to appear (2012).Google Scholar
  20. 20.
    A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal., 47 (2009), pp. 805–827.Google Scholar
  21. 21.
    Demlow , Dziuk G.: An adaptive finite element method for the Laplace- Beltrami operator on surfaces. SIAM Journal on Numerical Analysis. 45, 421–442 (2007)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differential equations and calculus of variations, S. Hildebrandt and R. Leis, eds., vol. 1357 of Lecture Notes in Mathematics, Springer Berlin Heidelberg New York London Paris Tokyo, 1988, pp. 142–155.Google Scholar
  23. 23.
    G. Dziuk, An algorithm for evolutionary surfaces, Numerische Mathematik, 58 (1991), pp. 603–611.Google Scholar
  24. 24.
    G. Dziuk, Computational parametric Willmore flow, Numerische Mathematik, 111 (2008), pp. 55–80.Google Scholar
  25. 25.
    G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA Journal Numerical Analysis, 25 (2007), pp. 385–407.Google Scholar
  26. 26.
    G. Dziuk and C. M. Elliott, Surface finite elements for parabolic equations, J. Comp. Mathematics, 25 (2007), pp. 385–407.Google Scholar
  27. 27.
    G. Dziuk and C. M. Elliott, Eulerian finite element method for parabolic pdes on implicit surfaces, Interfaces and Free Boundaries, 10 (2008), pp. 119–138.Google Scholar
  28. 28.
    G. Dziuk and C. M. Elliott, An Eulerian approach to transport and diffusion on evolving implicit surfaces, Computing and Visualization in Science, 13 (2010), pp. 17–28.Google Scholar
  29. 29.
    G. Dziuk and C. M. Elliott, Fully discrete evolving surface finite element method, SIAM J. Numer. Anal., to appear (2012).Google Scholar
  30. 30.
    G. Dziuk and C. M. Elliott, L 2 estimates for the evolving surface finite element method, Math. Comp., (2012).Google Scholar
  31. 31.
    G. Dziuk, C. Lubich, and D. Mansour, Runge-Kutta time discretization of parabolic differential equations on evolving surfaces, IMA Journal of Numerical Analysis, 32 (2012), pp. 394–416.Google Scholar
  32. 32.
    C. Eilks and C. M. Elliott, Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method, Journal of Computational Physics, 227 (2008), pp. 9727–9741.Google Scholar
  33. 33.
    C. M. Elliott and T. Ranner, Finite element analysis for a coupled bulk-surface partial differential equation, IMA J. Numer. Anal., to appear (2012).Google Scholar
  34. 34.
    C. M. Elliott and B. Stinner, Analysis of a diffuse interface approach to an advection diffusion equation on a moving surfacei, Math. Mod. Meth. Appl. Sci., 5 (2009), pp. 787–802.Google Scholar
  35. 35.
    C. M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements, J Comput Phys, 229 (2010), pp. 6585–6612.Google Scholar
  36. 36.
    C. M. Elliott, B. Stinner, V. Styles, and R. Welford, Numerical computation of advection and diffusion on evolving diffuse interfaces, IMA J. Numer. Anal., 31 (2011), pp. 786–812.Google Scholar
  37. 37.
    C. M. Elliott, B. Stinner, and C. Venkataraman, Modelling cell motility and chemotaxis with evolving surface finite elements, Journal of the Royal Society Interface, 9 (2012), pp. 3027–3044.Google Scholar
  38. 38.
    C. M. Elliott and V. Styles, Computations of bidirectional grain boundary dynamics in thin metallic films, Journal of Computational Physics, 187 (2003), pp. 524–543.Google Scholar
  39. 39.
    P. C. Fife, J. W. Cahn, and C. M. Elliott, A free-boundary model for diffusioninduced grain boundary motion, Interfaces Free Bound., 3 (2001), pp. 291–336.Google Scholar
  40. 40.
    P. C. Fife and X. Wang, Chemically induced grain boundary dynamics, forced motion by curvature, and the appearance of double seams, European J. Applied Mathematics, 13 (2002), pp. 25–52.Google Scholar
  41. 41.
    H. Garcke and V. M. Styles, Bi-directional diffusion induced grain boundary motion with triple junctions, Interfaces and Free Boundaries, 6 (2004), pp. 271–294.Google Scholar
  42. 42.
    Greer J. B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. J. Sci. Comput. 29, 321–352 (2006)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    J. B. Greer, A. L. Bertozzi, and G. Sapiro, Fourth order partial differential equations on general geometries, J. Comput. Phys., 216 (2006), pp. 216–246.Google Scholar
  44. 44.
    C. Handwerker, Diffusion-induced grain boundary migration in thin films, in Diffusion Phenomena in Thin Films and Microelectronic Materials, D. Gupta and P. Ho, eds., Noyes Pubs. Park Ridge, N.J., 1988, pp. 245–322.Google Scholar
  45. 45.
    A. Henderson, ParaView Guide, A Parallel Visualization Application, Kitware Inc., 2007.Google Scholar
  46. 46.
    A. J. James and J. Lowengrub, A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant, Journal of Computational Physics, 201 (2004), pp. 685–722.Google Scholar
  47. 47.
    L. Ju and Q. Du, A finite volume method on general surfaces and its error estimates, J. Math. Anal. Appl., 352 (2009), pp. 645–668.Google Scholar
  48. 48.
    L. Ju, L. Tian, and D. Wang, A posteriori error estimates for finite volume approximations of elliptic equations on general surfaces, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 716–726.Google Scholar
  49. 49.
    M. Lenz, S. F. Nemadjieu, and M. Rumpf, Finite volume method on moving surfaces v. Proceedings of the 5th international symposium held in Aussois, June 2008., in Finite volumes for complex applications, R.Eymard and J.-M. H´erard, eds., Hoboken, NJ,, 2008, John Wiley & Sons, Inc., pp. Hoboken, NJ,.Google Scholar
  50. 50.
    M. Lenz, S. F. Nemadjieu, and M. Rumpf, A convergent finite volume scheme for diffusion on evolving surfaces, SIAM J. Numer. Anal., 49 (2011), pp. 15–37.Google Scholar
  51. 51.
    C. B. Macdonald and S. J. Ruuth, Level set equations on surfaces via the Closest Point Method, Journal of Scientific Computing, 35 (2008), pp. 219–240.Google Scholar
  52. 52.
    C. B. Macdonald and S. J. Ruuth, The implicit closest point method for the numerical solution of partial differential equations on surfaces., SIAM J. Sci. Comput., 31 (2009), pp. 4330–4350.Google Scholar
  53. 53.
    U. F. Mayer and G. Simonett, Classical solutions for diffusion-induced grainboundary motion, J. Math. Anal. Appl., 234 (1999), pp. 660–674.Google Scholar
  54. 54.
    M. Neilson, J. Mackenzie, S. Webb, and R. Insall, Modelling cell movement and chemotaxis using pseudopod-based feedback, SIAM Journal on Scientific Computing, 33 (2011), pp. 1035–1057.Google Scholar
  55. 55.
    M. A. Olshanskii and A. Reusken, A finite element method for surface pdes: matrix properties, Numer. Math., 114 (2010), pp. 491–520.Google Scholar
  56. 56.
    M. A. Olshanskii, A. Reusken, and J. Grande, A finite element method for elliptic equations on surfaces, SIAM J. Numer. Anal., 47 (2009), pp. 3339–3358.Google Scholar
  57. 57.
    S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, vol. 153 of Appl. Math. Sci, Springer Verlag, 2003.Google Scholar
  58. 58.
    A. Ratz and A. Voigt, Pdes on surfaces - a diffuse interface approach, Communications in Mathematical Sciences, 4 (2006), pp. 575–590.Google Scholar
  59. 59.
    Ruuth S. J., Merriman B: A simple embedding method for solving partial differential equations on surfaces. Journal of Computational Physics. 227, 1943–1961 (2008)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    A. Schmidt and K. G. Siebert, Design of adaptive finite element software: The finite element toolbox ALBERTA, vol. 42 of Lecture notes in computational science and engineering, Springer, 2005.Google Scholar
  61. 61.
    J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, Journal of Theoretical Biology, 81 (1979), pp. 389–400.Google Scholar
  62. 62.
    J. A. Sethian, Level set methods and fast marching methods,, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 1999.Google Scholar
  63. 63.
    J.-J. Xu and H.-K. Zhao, An Eulerian formulation for solving partial differential equations along a moving interface, Journal of Scientific Computing, 19 (2003), pp. 573–594.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK
  2. 2.Department of MathematicsUniversity of SussexBrightonUK

Personalised recommendations