Skip to main content
Log in

Computational Reduction for Parametrized PDEs: Strategies and Applications

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we present a compact review on the mostly used techniques for computational reduction in numerical approximation of partial differential equations. We highlight the common features of these techniques and provide a detailed presentation of the reduced basis method, focusing on greedy algorithms for the construction of the reduced spaces. An alternative family of reduction techniques based on surrogate response surface models is briefly recalled too. Then, a simple example dealing with inviscid flows is presented, showing the reliability of the reduced basis method and a comparison between this technique and some surrogate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubry N.: On the hidden beauty of the proper orthogonal decomposition. Theor. Comp. Fluid. Dyn. 2, 339–352 (1991)

    Article  MATH  Google Scholar 

  2. Berkooz G., Holmes P., Lumley J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  3. Binev P., Cohen A., Dahmen W., DeVore R., Petrova G., Wojtaszczyk P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blanco P., Discacciati M., Quarteroni A.: Modeling dimensionally-heterogeneous problems: analysis, approximation and applications. Numer. Math. 119, 299–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buhmann M.D.: Radial Basis Functions. Cambridge University Press, UK (2003)

    Book  MATH  Google Scholar 

  6. T. Bui-Thanh, K. Willcox, and O. Ghattas. Parametric reduced-order models for probabilistic analysis of unsteady aerodynamics applications. AIAA J., 46(10), 2008.

  7. J. Burkardt, Q. Du, and M. Gunzburger. Reduced order modeling of complex systems, 2003. Proceedings of NA03, Dundee.

  8. Burkardt J., Gunzburger M., Lee H.C.: Centroidal voronoi tessellation-based reduced-order modeling of complex systems. SIAM J. Sci. Comput. 28(2), 459–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burkardt J., Gunzburger M., Lee H.C.: POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comp. Methods Appl. Mech. Engrg. 196(1-3), 337–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chevreuil M., Nouy A.: Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics. Int. J. Numer. Methods Engng. 89(2), 241–268 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chinesta F., Ladeveze P., Cueto E.: A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Engrg. 18, 395–404 (2011)

    Article  Google Scholar 

  12. Christensen E.A., Brons M., Sorensen J.N.: Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows. SIAM J. Sci. Comput. 21, 1419 (1999)

    Article  MathSciNet  Google Scholar 

  13. N.A.C. Cressie. Statistics for spatial data. John Wiley & Sons, Ltd, UK, 1991.

  14. Deparis S., Rozza G.: Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity. J. Comput. Phys. 228(12), 4359–4378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Discacciati, P. Gervasio, and A. Quarteroni. Heterogeneous mathematical models in fluid dynamics and associated solution algorithms. In G. Naldi and G. Russo, editors, Multiscale and Adaptivity: Modeling, Numerics and Applications (Lecture notes of the C.I.M.E. Summer School, Cetraro, Italy 2009), Lecture Notes in Mathematics, Vol. 2040. Springer, 2010.

  16. Dumon A., Allery C., Ammar A.: Proper general decomposition (PGD) for the resolution of Navier-Stokes equations. J. Comput. Phys. 230, 1387–1407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fink J.P., Rheinboldt W.C.: On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 63(1), 21–28 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gervasio P., Lions J.-L., Quarteroni A.: Heterogeneous coupling by virtual control methods. Numer. Math. 90, 241–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grepl M.A., Maday Y., Nguyen N.C., Patera A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM Math. Modelling Numer. Anal. 41(3), 575–605 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gunzburger M.D., Peterson J.S., Shadid J.N.: Reducer-oder modeling of timedependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. Engrg. 196, 1030–1047 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haasdonk B., Ohlberger M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM Math. Modelling Numer. Anal. 42, 277–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Holmes, J.L. Lumley, and G. Berkooz. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge Univ. Press, 1998.

  23. Hotelling H.: Simplified calculation of principal components. Psychometrika 1, 27–35 (1936)

    Article  MATH  Google Scholar 

  24. K. Ito and S.S. Ravindran. A reduced order method for simulation and control of fluid flows. J. Comput. Phys., 143(2), 1998.

  25. P.S. Johansson, H.I. Andersson, and E.M. Ronquist. Reduced-basis modeling of turbulent plane channel flow. Compu. Fluids, 35(2):189–207, 2006.

    Google Scholar 

  26. Kleijnen J.: Kriging metamodeling in simulation: A review. European Journal Of Operational Research 192(3), 707–716 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kunisch K., Volkwein S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2003)

    Article  MathSciNet  Google Scholar 

  28. Lanczos c.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  29. Lieberman C., Willcox K., Ghattas O.: Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Sci. Comput. 32(5), 2523–2542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma X., Karniadakis G.E.M.: A low-dimensional model for simulating threedimensional cylinder flow. J. Fluid. Mech. 458, 181–190 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Manzoni, A. Quarteroni, and G. Rozza. Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomed. Engng., 2011. In press (DOI:10.1002/cnm.1465).

  32. A. Manzoni, A. Quarteroni, and G. Rozza. Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques. Int. J. Numer. Methods Fluids, 2011. In press (DOI:10.1002/fld.2712).

  33. McDonald D.B., Grantham W.J., Tabor W.L., Murphy M.J.: Global and local optimization using radial basis function response surface models. Applied Mathematical Modelling. 31(10), 2095–2110 (2007)

    Article  MATH  Google Scholar 

  34. N.C. Nguyen, K. Veroy, and A.T. Patera. Certified real-time solution of parametrized partial differential equations. In: Yip, S. (Ed.). Handbook of Materials Modeling, pages 1523–1558, 2005.

  35. Noor A.K., Peters J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)

    Article  Google Scholar 

  36. Nouy A.: Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch. Comput. Methods Engrg. 17, 403–434 (2010)

    Article  MathSciNet  Google Scholar 

  37. A.T. Patera and G. Rozza. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equation. Version 1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2009.

  38. Pearson K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine. 2, 559–572 (1901)

    Article  Google Scholar 

  39. J. Peiró and A. Veneziani. Reduced models of the cardiovascular system. In: Formaggia, L.; Quarteroni, A; Veneziani, A. (Eds.), Cardiovascular Mathematics, Springer, 2009.

  40. Peterson J.S.: The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10, 777–786 (1989)

    Article  MATH  Google Scholar 

  41. R. Pinnau. Model reduction via proper orthogonal decomposition. In W.H.A. Schilder and H. van der Vorst, editors, Model Order Reduction: Theory, Research Aspects and Applications,, pages 96–109. Springer, 2008.

  42. Porsching T.A., Lin Lee M.Y.: The reduced-basis method for initial value problems. SIAM Journal of Numerical Analysis. 24, 1277–1287 (1987)

    Article  MATH  Google Scholar 

  43. Prud’homme C., Rovas D., Veroy K., Maday Y., Patera A.T., Turinici G.: Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods. Journal of Fluids Engineering. 124(1), 70–80 (2002)

    Article  Google Scholar 

  44. Quarteroni A., Rozza G.: Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer. Methods Partial Differential Equations. 23(4), 923–948 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Quarteroni, G. Rozza, and A. Manzoni Certified reduced basis approximation for parametrized partial differential equations in industrial applications. J. Math. Ind., 1(3), 2011.

  46. A. Quarteroni and A.Valli. (1999) Domain Decomposition Methods for Partial Differential Equations. Oxford University Press

  47. Quarteroni A., Veneziani A.: Analysis of a geometrical multiscale model based on the coupling of pdes and odes for blood flow simulations. SIAM J. on Multiscale Model. Simul. 1(2), 173–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rozza G.: Reduced basis approximation and error bounds for potential flows in parametrized geometries. Comm. Comput. Phys. 9, 1–48 (2011)

    MathSciNet  Google Scholar 

  49. Rozza G., Huynh D.B.P., Patera A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Engrg. 15, 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rozza G., Veroy K.: On the stability of reduced basis methods for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg. 196(7), 1244–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Santner T.J., Williams B.J., Notz W.: The design and analysis of computer experiments. Springer-Verlag, New York (2003)

    MATH  Google Scholar 

  52. W. Schilder. Introduction to model order reduction. In W. Schilder and H. van der Vorst, editors, Model Order Reduction: Theory, Research Aspects and Applications,, pages 3–32. Springer, 2008.

  53. Sirovich L.: Turbulence and the dynamics of coherent structures, part i: Coherent structures. Quart. Appl. Math. 45(3), 561–571 (1987)

    MathSciNet  MATH  Google Scholar 

  54. Veroy K., Patera A.T.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids. 47(8-9), 773–788 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. F.A.C. Viana, C. Gogu, and R.T. Haftka. Making the most out of surrogate models: tricks of the trade. In Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pages 587-598, 2010.

  56. S. Volkwein. Model reduction using proper orthogonal decomposition, 2011. Lecture Notes, University of Konstanz, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Manzoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzoni, A., Quarteroni, A. & Rozza, G. Computational Reduction for Parametrized PDEs: Strategies and Applications. Milan J. Math. 80, 283–309 (2012). https://doi.org/10.1007/s00032-012-0182-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-012-0182-y

Mathematics Subject Classification (2010)

Keywords

Navigation