Abstract
We describe some basic results from regularity theory for solutions to elliptic quasilinear equations involving an assigned measure datum and we include some new integrability and differentiability results for sublinear problems.
Similar content being viewed by others
References
Acerbi E., Mingione G.: Gradient estimtes for the p(x)-Laplacean system. J. Reine Ang. Math. (Crelles J) 584, 117–148 (2005)
Acerbi E., Mingione G.: Gradient estimates for a class of parabolic systems. Duke Math. J 136, 285–320 (2007)
Adams D. R.: Traces of potentials arising from translation invariant operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (III) 25, 203–217 (1971)
Adams D.R.: A note on Riesz potentials. Duke Math. J 42, 765–778 (1975)
Adams D.R., Hedberg L.I.: Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften 314. Springer-Verlag, Berlin (1996)
Adams D.R., Meyers N.G.: Thinnes and Wiener criteria for nonlinear potentials. Indiana Univ. Math. J 22, 169–197 (1972)
Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)
Alvino A., Ferone V., Trombetti G.: Estimates for the gradient of solutions of nonlinear elliptic equations with L 1-data. Ann. Mat. Pura Appl. (IV) 178, 129–142 (2000)
Barenblatt G. I.: On self-similar motions of a compressible fluid in a porous medium. Akad. Nauk SSSR. Prikl. Mat. Meh 16, 679–698 (1952)
Baroni P. & Habermann, J.: Calderón-Zygmund estimates for parabolic measure data problems. J. Differential Equations, doi:10.1016/j.jde.2011.08.016
Baroni P. & Habermann, J.: New gradient estimates for parabolic equations. Houston J. Math., to appear.
Benilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vázquez J.L.: An L 1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 22, 241–273 (1995)
Boccardo L.: Problemi differenziali ellittici e parabolici con dati misure. Boll. Un. Mat. Ital. A 7(11), 439–461 (1997)
Boccardo L.: Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data. Ann. Mat. Pura Appl. (IV) 188, 591–601 (2009)
Boccardo L., Dall’Aglio A., Gallouët T., Orsina L.: Nonlinear parabolic equations with measure data. J. Funct. Anal 147, 237–258 (1997)
Boccardo L., Gallouët T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal 87, 149–169 (1989)
Boccardo L., Boccardo L., Boccardo L.: Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations 17, 641–655 (1992)
Bojarski B., Iwaniec T.: Analytical foundations of the theory of quasiconformal mappings in \({\mathbb{R}_n}\). Ann. Acad. Sci. Fenn. Ser. A I Math 8, 257–324 (1983)
Calderón A. P., Zygmund A.: On the existence of certain singular integrals. Acta Math 88, 85–139 (1952)
Calderón A.P., Zygmund A.: On singular integrals. Amer. J. Math 78, 289–309 (1956)
Dall’Aglio A.: Approximated solutions of equations with L 1 data. Application to the Hconvergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. (IV) 170, 207–240 (1996)
Dal Maso G., Murat F., Orsina L., Prignet A.: Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 28, 741–808 (1999)
De Giorgi E.: Sulla differenziabilità e l’analiticit‘a delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. (III) 125(3), 25–43 (1957)
DeVore, R.A. & Sharpley, R.C.: Maximal functions measuring smoothness. Mem. Amer. Math. Soc. 47 (1984), no. 293.
DiBenedetto E.: C 1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. TMA 7, 827–850 (1983)
DiBenedetto E.: On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 13, 487–535 (1986)
DiBenedetto E.: Degenerate parabolic equations Universitext. Springer-Verlag, New York (1993)
DiBenedetto E., Friedman A.: Hölder estimates for nonlinear degenerate parabolic systems. J. reine ang. Math. (Crelles J.) 357, 1–22 (1985)
DiBenedetto E., Gianazza U., Vespri V.: Alternative forms of the Harnack inequality for Non-Negative solutions to certain degenerate and singular parabolic equations. Rendiconti Lincei - Matematica e Applicazioni 20, 369–377 (2009)
DiBenedetto E., Gianazza U., Vespri V.: Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations. Ann. Scu. Norm. Sup. Pisa Cl. Sci. (V) 9, 385–422 (2010)
DiBenedetto E., Manfredi J.J.: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Amer. J. Math. 115, 1107–1134 (1993)
Dolzmann G., Hungerbühler N., Müller S.: The p-harmonic system with measurevalued right hand side. Ann. Inst. H. Poincarè, Anal. Non Linèaire 14, 353–364 (1997)
Dolzmann G., Hungerbühler N., Müller S.: Non-linear elliptic systems with measure-valued right hand side. Math. Z. 226, 545–574 (1997)
Dolzmann G., Hungerbühler N., Müller S.: Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side. J. Reine Angew. Math. (Crelles J.) 520, 1–35 (2000)
Duzaar F., Kristensen J., Mingione G.: The existence of regular boundary points for non-linear elliptic systems. J. Reine Ang. Math. (Crelles J.) 602, 17–58 (2007)
Duzaar F., Mingione G.: Gradient estimates in nonlinear potential theory. Rendiconti Lincei - Matematica e Applicazioni 20, 179–190 (2009)
Duzaar F., Mingione G.: Gradient estimates via non-linear potentials. Amer. J.Math 133, 1093–1149 (2011)
Duzaar F., Mingione G.: Gradient estimates via linear and nonlinear potentials. J. Funct. Anal 259, 2961–2998 (2010)
Duzaar F., Mingione G.: Gradient continuity estimates. Calc. Var. & PDE 39, 379–418 (2010)
Duzaar F., Mingione G.: Local Lipschitz regularity for degenerate elliptic systems. Ann. Inst. H. Poincaré, Anal. Non Linèaire 27, 1361–1396 (2010)
Esposito L., Leonetti F., Mingione G.: Higher integrability for minimizers of integral functionals with (p, q) growth. J. Differential Equations 157, 414–438 (1999)
Esposito L., Leonetti F., Mingione G.: Sharp regularity for functionals with (p, q) growth. J. Differential Equations 204, 5–55 (2004)
Fuchs M., Reuling J.: Nonlinear elliptic systems involving measure data. Rend. Mat. Appl. (VII) 15, 311–319 (1995)
Giusti E.: Direct methods in the calculus of variations. World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
Grafakos, L.: Classical and modern Fourier analysis. Pearson Edu. Inc., Upper Saddle River, NJ, 2004.
Hamburger C.: Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. (Crelles J.) 431, 7–64 (1992)
Havin M., Maz’ya V.G.: A nonlinear potential theory. Russ. Math. Surveys 27, 71–148 (1972)
Hedberg L.I., Wolff T.: Thin sets in nonlinear potential theory. Ann. Inst. Fourier (Grenoble) 33, 161–187 (1983)
Heinonen, J. & Kilpeläinen, T. & Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs., New York, 1993.
Iwaniec T.: Projections onto gradient fields and L p-estimates for degenerated elliptic operators. Studia Math 75, 293–312 (1983)
Jin T., Mazya V., Van Schaftingen J.: Pathological solutions to elliptic problems in divergence form with continuous coefficients. Comptes Rendus Mathematique 347, 773–778 (2009)
Kilpeläinen T., Li G.: Estimates for p-Poisson equations. Diff. Int. Equ 13, 791–800 (2000)
Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math 172, 137–161 (1994)
Kilpeläinen, T. & Kuusi, T. & Tuhola-Kujanpää, A.: Superharmonic functions are locally renormalized solutions. Ann. Inst. H. Poincarè, Anal. Non Linèaire, doi:10.1016/j.anihpc.2011.03.004
Kristensen J., Mingione G.: The singular set of minima of integral functionals. Arch. Ration. Mech. Anal 180, 331–398 (2006)
Kristensen J., Mingione G.: Boundary regularity in variational problems. Arch. Ration. Mech. Anal 198, 369–455 (2010)
Korte R., Kuusi T.: A note on the Wolff potential estimate for solutions to elliptic equations involving measures. Adv. Calc. Var 3, 99–113 (2010)
Kuusi T.: Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (V) 7, 673–716 (2008)
Kuusi, T. & Mingione, G.: Potential estimates and gradient boundedness for nonlinear parabolic systems. Rev. Mat. Iberoamericana, to appear.
Kuusi, T. & Mingione, G.: Universal potential estimates. Preprint 2010.
Kuusi T., Mingione G.: Endpoint and intermediate potential estimates for nonlinear equations. Boll. UMI (Ser. IX) 4, 149–157 (2011)
Kuusi T., Mingione G.: Nonlinear potential estimates in parabolic problems. Rendiconti Lincei - Matematica e Applicazioni 22, 161–174 (2011)
Kuusi, T. & Mingione, G.: TheWolff gradient bound for degenerate parabolic equations. Preprint 2010.
Kuusi, T. & Mingione, G.: Gradient regularity for nonlinear parabolic equations. Preprint 2011.
Kuusi, T. & Mingione, G.: New perturbation methods in nonlinear parabolic problems. Preprint 2011.
Kuusi, T. & Mingione, G.: Interpolative intrinsic geometries and the regularity of nonlinear parabolic equations. Preprint 2011.
Kuusi T., Mingione G.: A surprising linear type estimate for nonlinear elliptic equations. C. R. Acad. Sci. Paris Ser. I 349, 889–892 (2011)
Kuusi, T. & Mingione, G.: Linear potentials in nonlinear potential theory. Preprint 2011.
Kuusi T., Parviainen M.: Existence for a degenerate Cauchy problem. Manuscripta Math 128, 213–249 (2009)
Leonardi S., Stará J.: Regularity results for the gradient of solutions of linear elliptic systems with VMO-coefficients and L 1,λ data. Forum Math. 22, 913–940 (2010)
Leray J., Lions J.-L.: Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107 (1965)
Lieberman G.M.: Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures. Comm. PDE 18, 1191–1212 (1993)
Lindqvist P.: On the definition and properties of p-superharmonic functions. J. Reine Angew. Math. (Crelles J.) 365, 67–79 (1986)
Lukkari T., Maeda F.Y., Marola N.: Wolff potential estimates for elliptic equations with nonstandard growth and applications. Forum Math. 22, 1061–1087 (2010)
Mingione G.: The singular set of solutions to non-differentiable elliptic systems. Arch. Ration. Mech. Anal 166, 287–301 (2003)
Mingione G.: Regularity of minima: an invitation to the Dark Side of the Calculus of Variations. Applications of Mathematics 51, 355–425 (2006)
Mingione G.: The Calderón-Zygmund theory for elliptic problems with measure data. Ann Scu. Norm. Sup. Pisa Cl. Sci. (V) 6, 195–261 (2007)
Mingione G.: Gradient estimates below the duality exponent. Math. Ann. 346, 571–627 (2010)
Mingione G.: Gradient potential estimates. J. Europ. Math. Soc 13, 459–486 (2011)
Mingione G.: Nonlinear aspects of Calderón-Zygmund theory. Jahresbericht der DMV 112, 159–191 (2010)
Phuc N.C., Verbitsky I.E.: Quasilinear and Hessian equations of Lane-Emden type. Ann. of Math. (II) 168, 859–914 (2008)
Phuc N.C., Verbitsky I.E.: Quasilinear and Hessian equations of Lane-Emden type. J. Funct. Anal 256, 1875–1906 (2009)
Scheven, C.: Elliptic obstacle problems with measure data: Potentials and low order regularity. Preprint 2011.
Scheven, C.: Gradient potential estimates in non-linear elliptic obstacle problems with measure data. Preprint 2011.
Serrin J.: Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa (III) 18, 385–387 (1964)
Serrin J.: Local behavior of solutions of quasi-linear equations. Acta Math 111, 247–302 (1964)
Stein, E. M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Math. Series, 43. Princeton University Press, Princeton, NJ, 1993.
Stein, E. M. & Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Math. Ser., 32. Princeton Univ. Press, Princeton, N.J. 1971.
Talenti G.: Elliptic equations and rearrangements. Ann Scu. Norm. Sup. Pisa Cl. Sci. (IV) 3, 697–717 (1976)
Trudinger N.S., Wang X.J.: On the weak continuity of elliptic operators and applications to potential theory. Amer. J. Math 124, 369–410 (2002)
Trudinger N.S., Wang X.J.: Quasilinear elliptic equations with signed measure data. Disc. Cont. Dyn. Systems A 23, 477–494 (2009)
Vázquez, J.L.: Smoothing and decay estimates for nonlinear diffusion equations. Equations of porous medium type. Oxford Lecture Series in Math. Appl., 33. Oxford University Press, Oxford, 2006. xiv+234 pp.
Zhong X.: On nonhomogeneous quasilinear elliptic equations. Dissertation, University of Jyväskylä, 1998. Ann. Acad. Sci. Fenn. Math. Diss. 117 (1998).
Author information
Authors and Affiliations
Corresponding author
Additional information
To Lucio Boccardo on his mth birthday, $${m \in}$$ (60, 65)
This work has been supported by the ERC grant 207573 “Vectorial problems”.
Lecture held in the Seminario Matematico e Fisico di Milano on March 4, 2010
Rights and permissions
About this article
Cite this article
Mingione, G. Nonlinear Measure Data Problems. Milan J. Math. 79, 429–496 (2011). https://doi.org/10.1007/s00032-011-0168-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00032-011-0168-1