Skip to main content
Log in

Quasi-Integrable Modules over Twisted Affine Lie Superalgebras

  • Original Paper
  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

In this paper, we characterize quasi-integrable modules, of nonzero level, over twisted affine Lie superalgebras. We show that these form a class of not necessarily highest weight modules. We prove that each nonzero level quasi-integrable module is parabolically induced from a cuspidal module, over a finite dimensional Lie superalgebra having a Cartan subalgebra whose corresponding root system just contain real roots; in particular, the classification of nonzero level quasi-integrable modules is reduced to the known classification of cuspidal modules over such Lie superalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. We use \(\#\) to indicate the cardinal number.

  2. It is the subalgebra of all diagonal matrices.

  3. In Proposition 3.7 of [23], we are working with \(\mathfrak {L}\) or \(\mathfrak {L}_0\) instead of \(\mathscr {G}\) introduced here, but our assumptions on T make the same situation as in Proposition 3.7 of [23].

References

  1. Benkart, G., Britten, D., Lemire, F.: Modules with bounded weight multiplicities for simple Lie algebras. Math. Z. 225 (1997)

  2. Chari, V.: Integrable representations of affine Lie-algebras. Invent. Math. 85, 317–335 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chari, V., Pressley, A.: Integrable representations of twisted affine Lie algebras. J. Algebra 113, 438–464 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Darehgazani, A., Shirnejad, F., Yousofzadeh, M.: Affine Lie superalgebras. J. Algebra 570, 636–677 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dimitrov, I., Futorny, V., Grantcharov, D.: Parabolic sets of roots. Contemp. Math. 499, 61–74 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dimitrov, I., Grantcharov, D.: Classification of simple weight modules over affine Lie algebras. https://arxiv.org/pdf/0910.0688

  7. Dimitrov, I., Mathieu, O., Penkov, I.: On the structure of weight modules. Trans. Amer. Math. Soc. 352(6), 2857–2869 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eswara Rao, S.: Complete reducibility of integrable modules for the affine Lie (super)algebras. J. Algebra 264:269–278 (2003)

  9. Eswara Rao, S.: Classification of Loop modules with finite-dimensional weight spaces. Math. Ann. 305:651–663 (1996)

  10. Eswara Rao, S., Futorny, V.: Integrable modules for affine Lie superalgebras. Trans. Amer. Math. Soc. 361(10), 5435–5455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernando, S.L.: Lie algebra modules with finite dimensional weight spaces I. Trans. Amer. Math. Soc. 322(1), 757–781 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Futorny, V.: Classification of irreducible nonzero level modules with finite dimensional weight spaces for affine Lie algebras. J. Algebra 238, 426–441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Futorny, V.: Representations of affine Lie superalgebras, Groups, rings and group rings, 163–172. Lect. Notes Pure Appl. Math. 248 (2006)

  14. Futorny, V., Tsylke, A.: Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine lie algebras. J. Algebra 238, 426–441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferguson, T., Gorelik, M., Grantcharov, D.: Bounded highest weight modules over \(\mathfrak{osp}(1,2n),\) Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topics. Proceeding of Symposia in Pure Mathematics 135–144 (2019)

  16. Gorelik, M., Serganova, V.: Integrable modules over affine Lie superalgebras \(sl(1\mid n)^{(1)}\). Comm. Math. Phys. 364(2), 635–654 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grantcharov, D.: Explicit realizations of simple weight modules of classical Lie superalgebras, Groups, rings and group rings, Contemp. Math., vol. 499, Amer. Math. Soc., Providence, RI, 141–148 (2009)

  18. Hoyt, C.: Weight modules for \(D(2,1,\alpha )\). Advances in Lie Superalgebras 91–100 (2014)

  19. Kac, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215, 631–682 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mathieu, O.: Classification of irreducible weight modules. Ann. Inst. Fourier 50, 537–592 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Van de Leur, J.W.: Contragredient Lie superalgebras of finite growth, Ph. D. Thesis, Utrecht University (1986)

  22. Yousofzadeh, M.: Extended affine Lie superalgebras. Publ. Res. Inst. Math. Sci. 52(3), 309–333 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yousofzadeh, M.: Finite weight modules over twisted affine Lie superalgebras. J. Algebra 564, 436–479 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yousofzadeh, M.: Tight irreducible finite weight modules over twisted affine Lie superalgebras. J. Pure App. Algebra 225(10), 106703 (2021)

Download references

Acknowledgements

This research was in part supported by a grant from IPM (No. 1400170215) and is partially carried out in IPM-Isfahan Branch. This work is based upon research funded by Iran Nathional Science Foundation INSF (No. 4001480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malihe Yousofzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousofzadeh, M. Quasi-Integrable Modules over Twisted Affine Lie Superalgebras. Transformation Groups (2023). https://doi.org/10.1007/s00031-023-09805-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00031-023-09805-4

Keywords

Navigation