Abstract
In this paper, we characterize quasi-integrable modules, of nonzero level, over twisted affine Lie superalgebras. We show that these form a class of not necessarily highest weight modules. We prove that each nonzero level quasi-integrable module is parabolically induced from a cuspidal module, over a finite dimensional Lie superalgebra having a Cartan subalgebra whose corresponding root system just contain real roots; in particular, the classification of nonzero level quasi-integrable modules is reduced to the known classification of cuspidal modules over such Lie superalgebras.
Similar content being viewed by others
Data Availability
The datasets generated during or analysed during the current study are available from the corresponding author on reasonable request.
Notes
We use \(\#\) to indicate the cardinal number.
It is the subalgebra of all diagonal matrices.
References
Benkart, G., Britten, D., Lemire, F.: Modules with bounded weight multiplicities for simple Lie algebras. Math. Z. 225 (1997)
Chari, V.: Integrable representations of affine Lie-algebras. Invent. Math. 85, 317–335 (1986)
Chari, V., Pressley, A.: Integrable representations of twisted affine Lie algebras. J. Algebra 113, 438–464 (1988)
Darehgazani, A., Shirnejad, F., Yousofzadeh, M.: Affine Lie superalgebras. J. Algebra 570, 636–677 (2021)
Dimitrov, I., Futorny, V., Grantcharov, D.: Parabolic sets of roots. Contemp. Math. 499, 61–74 (2009)
Dimitrov, I., Grantcharov, D.: Classification of simple weight modules over affine Lie algebras. https://arxiv.org/pdf/0910.0688
Dimitrov, I., Mathieu, O., Penkov, I.: On the structure of weight modules. Trans. Amer. Math. Soc. 352(6), 2857–2869 (2000)
Eswara Rao, S.: Complete reducibility of integrable modules for the affine Lie (super)algebras. J. Algebra 264:269–278 (2003)
Eswara Rao, S.: Classification of Loop modules with finite-dimensional weight spaces. Math. Ann. 305:651–663 (1996)
Eswara Rao, S., Futorny, V.: Integrable modules for affine Lie superalgebras. Trans. Amer. Math. Soc. 361(10), 5435–5455 (2009)
Fernando, S.L.: Lie algebra modules with finite dimensional weight spaces I. Trans. Amer. Math. Soc. 322(1), 757–781 (1990)
Futorny, V.: Classification of irreducible nonzero level modules with finite dimensional weight spaces for affine Lie algebras. J. Algebra 238, 426–441 (2001)
Futorny, V.: Representations of affine Lie superalgebras, Groups, rings and group rings, 163–172. Lect. Notes Pure Appl. Math. 248 (2006)
Futorny, V., Tsylke, A.: Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine lie algebras. J. Algebra 238, 426–441 (2001)
Ferguson, T., Gorelik, M., Grantcharov, D.: Bounded highest weight modules over \(\mathfrak{osp}(1,2n),\) Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topics. Proceeding of Symposia in Pure Mathematics 135–144 (2019)
Gorelik, M., Serganova, V.: Integrable modules over affine Lie superalgebras \(sl(1\mid n)^{(1)}\). Comm. Math. Phys. 364(2), 635–654 (2018)
Grantcharov, D.: Explicit realizations of simple weight modules of classical Lie superalgebras, Groups, rings and group rings, Contemp. Math., vol. 499, Amer. Math. Soc., Providence, RI, 141–148 (2009)
Hoyt, C.: Weight modules for \(D(2,1,\alpha )\). Advances in Lie Superalgebras 91–100 (2014)
Kac, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215, 631–682 (2001)
Mathieu, O.: Classification of irreducible weight modules. Ann. Inst. Fourier 50, 537–592 (2000)
Van de Leur, J.W.: Contragredient Lie superalgebras of finite growth, Ph. D. Thesis, Utrecht University (1986)
Yousofzadeh, M.: Extended affine Lie superalgebras. Publ. Res. Inst. Math. Sci. 52(3), 309–333 (2016)
Yousofzadeh, M.: Finite weight modules over twisted affine Lie superalgebras. J. Algebra 564, 436–479 (2020)
Yousofzadeh, M.: Tight irreducible finite weight modules over twisted affine Lie superalgebras. J. Pure App. Algebra 225(10), 106703 (2021)
Acknowledgements
This research was in part supported by a grant from IPM (No. 1400170215) and is partially carried out in IPM-Isfahan Branch. This work is based upon research funded by Iran Nathional Science Foundation INSF (No. 4001480).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yousofzadeh, M. Quasi-Integrable Modules over Twisted Affine Lie Superalgebras. Transformation Groups (2023). https://doi.org/10.1007/s00031-023-09805-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00031-023-09805-4