Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Transformation Groups
  3. Article

PERIODICITY FOR SUBQUOTIENTS OF THE MODULAR CATEGORY 𝒪

  • Open access
  • Published: 02 September 2022
  • volume 28, pages 1081–1100 (2023)
Download PDF

You have full access to this open access article

Transformation Groups Aims and scope Submit manuscript
PERIODICITY FOR SUBQUOTIENTS OF THE MODULAR CATEGORY 𝒪
Download PDF
  • PETER FIEBIG1 
  • 103 Accesses

  • 1 Citation

  • Explore all metrics

Cite this article

Abstract

In this paper we study the category 𝒪 over the hyperalgebra of a reductive algebraic group in positive characteristics. For any locally closed subset K of weights, we define a subquotient 𝒪[K] of 𝒪. It has the property that its simple objects are parametrized by elements in K. We then show that 𝒪[K] is equivalent to 𝒪 [K +pl γ] for any dominant weight γ if l > 0 is an integer such that K ∩ (K – pl η) = ∅ for all weights η > 0. Hence it is enough to understand the subquotients inside the dominant (or the antidominant) chamber.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. H. H. Andersen, BGG categories in prime characteristics, arxiv:2106.00057 (2021).

  2. И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, Об одной категории 𝔤-модуль, Φункц. анализ и его прил. 10 (1976), вып. 2, 1–8. Engl. transl.: J. Bernshtein, I. M. Gel’fand, S. I. Gel’fand, Category of 𝔤-modules, Functional. Anal. and its Appl. 10 (1976), no. 2, 87–92.

  3. C. Chevalley, Certains schémas de groupes semi-simples, Séminaire Bourbaki (1960–1961), 2e éd., Vol. 6, Paris, 1961, pp. 219–234.

  4. Deodhar, V.V., Gabber, O., Kac, V.G.: Structure of some categories of representations of infinite-dimensional Lie algebras. Adv. in Math. 45, 92–116 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fiebig, P.: The combinatorics of category 𝒪 over symmetrizable Kac–Moody algebras. Transform. Groups. 11, 29–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France. 90, 323–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Humphreys, J.E.: Modular representations of classical Lie algebras and semi-simple groups. J. of Algebra. 19, 51–79 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category 𝒪, Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence, RI (2008)

    Google Scholar 

  9. J. C. Jantzen, Representations of Algebraic Groups, 2nd edition, Math. Surveys and Monogr., Vol. 107, Amer. Math. Soc., Providence, RI, 2003.

  10. B. Kostant, Groups over ℤ, Proc. Sympos. Pure Math., Vol. 9, Amer. Math. Soc., Providence, RI, 1966, 90–98.

  11. Rocha-Caridi, A., Wallach, N.R.: Projective modules over graded Lie algebras. Math. Zeitschrift. 180, 151–177 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Department Mathematik, FAU Erlangen–Nürnberg, Cauerstr. 11, 91058, Erlangen, Germany

    PETER FIEBIG

Authors
  1. PETER FIEBIG
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to PETER FIEBIG.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FIEBIG, P. PERIODICITY FOR SUBQUOTIENTS OF THE MODULAR CATEGORY 𝒪. Transformation Groups 28, 1081–1100 (2023). https://doi.org/10.1007/s00031-022-09770-4

Download citation

  • Received: 21 March 2022

  • Accepted: 24 May 2022

  • Published: 02 September 2022

  • Issue Date: September 2023

  • DOI: https://doi.org/10.1007/s00031-022-09770-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature