Skip to main content

A PERMUTATION MODULE DELIGNE CATEGORY AND STABLE PATTERNS OF KRONECKER COEFFICIENTS

Abstract

Deligne’s category \( \underset{\_}{\mathrm{Rep}}\left({S}_t\right) \) is a tensor category depending on a parameter t “interpolating” the categories of representations of the symmetric groups Sn. We construct a family of categories Cλ (depending on a vector of variables λ = (λ1, λ2, … , λl), that may be specialised to values in the ground ring) which are module categories over \( \underset{\_}{\mathrm{Rep}}\left({S}_t\right). \) The categories Cλ are defined over any ring and are constructed by interpolating permutation representations. Further, they admit specialisation functors to Sn-mod which are tensor-compatible with the functors \( \underset{\_}{\mathrm{Rep}}\left({S}_t\right)\to {S}_n-\operatorname{mod}. \) We show that Cλ can be presented using the Kostant integral form of Lusztig’s universal enveloping algebra \( \dot{U}\left({\mathfrak{gl}}_{\infty}\right), \) and exhibit a categorification of some stability properties of Kronecker coefficients.

This is a preview of subscription content, access via your institution.

References

  1. Bowman, C., De Visscher, M., Orellana, R.: The partition algebra and the Kronecker coefficients. Trans. Amer. Math. Soc. 367(5), 3647–3667 (2015)

    Article  MathSciNet  Google Scholar 

  2. Benkart, G., Halverson, T., Harman, N.: Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups. J. Algebraic Combin. 46(1), 77–108 (2017)

    Article  MathSciNet  Google Scholar 

  3. J. Comes, V. Ostrik, On blocks of Deligne’s category \( \underset{\_}{Rep}\left({S}_t\right) \), Adv. Math. 226 (2011), no. 2, 1331-1377.

  4. Doty, S., Giaquinto, A.: Presenting Schur algebras. Int. Math. Res. Not. IMRN. 2002(36), 1907–1944 (2002)

    Article  MathSciNet  Google Scholar 

  5. R. Dipper, G. James, Representations of Hecke algebras of general linear groups, Proc. Lond. Math. Soc. (3) 52 (1986), no. 1, 20-52.

  6. J. A. Green, Polynomial Representations of GLn: with an Appendix on Schensted Correspondence and Littelmann Paths, Lecture Notes in Mathematics, Vol. 830, Springer-Verlag, Berlin, 2006.

  7. N. Harman, Stability and periodicity in the modular representation theory of symmetric groups, arXiv:1509.06414 (2015).

  8. N. Harman, Deligne Categories and Representation Stability in Positive Characteristic, PhD thesis, Massachusetts Institute of Technology, 2017.

  9. Sam, S.V., Snowden, A.: Proof of Stembridges conjecture on stability of Kronecker coefficients. J. Algebraic Combin. 43(1), 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  10. J. R. Stembridge, Generalized stability of Kronecker coefficients, unpublished manuscript, 2014.

  11. Santana, A.P., Yudin, I.: Characteristic-free resolutions of Weyl and Specht modules. Adv. Math. 229(4), 2578–2601 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHRISTOPHER RYBA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RYBA, C. A PERMUTATION MODULE DELIGNE CATEGORY AND STABLE PATTERNS OF KRONECKER COEFFICIENTS. Transformation Groups 27, 1069–1109 (2022). https://doi.org/10.1007/s00031-022-09737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-022-09737-5