Abstract
Deligne’s category \( \underset{\_}{\mathrm{Rep}}\left({S}_t\right) \) is a tensor category depending on a parameter t “interpolating” the categories of representations of the symmetric groups Sn. We construct a family of categories Cλ (depending on a vector of variables λ = (λ1, λ2, … , λl), that may be specialised to values in the ground ring) which are module categories over \( \underset{\_}{\mathrm{Rep}}\left({S}_t\right). \) The categories Cλ are defined over any ring and are constructed by interpolating permutation representations. Further, they admit specialisation functors to Sn-mod which are tensor-compatible with the functors \( \underset{\_}{\mathrm{Rep}}\left({S}_t\right)\to {S}_n-\operatorname{mod}. \) We show that Cλ can be presented using the Kostant integral form of Lusztig’s universal enveloping algebra \( \dot{U}\left({\mathfrak{gl}}_{\infty}\right), \) and exhibit a categorification of some stability properties of Kronecker coefficients.
This is a preview of subscription content, access via your institution.
References
Bowman, C., De Visscher, M., Orellana, R.: The partition algebra and the Kronecker coefficients. Trans. Amer. Math. Soc. 367(5), 3647–3667 (2015)
Benkart, G., Halverson, T., Harman, N.: Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups. J. Algebraic Combin. 46(1), 77–108 (2017)
J. Comes, V. Ostrik, On blocks of Deligne’s category \( \underset{\_}{Rep}\left({S}_t\right) \), Adv. Math. 226 (2011), no. 2, 1331-1377.
Doty, S., Giaquinto, A.: Presenting Schur algebras. Int. Math. Res. Not. IMRN. 2002(36), 1907–1944 (2002)
R. Dipper, G. James, Representations of Hecke algebras of general linear groups, Proc. Lond. Math. Soc. (3) 52 (1986), no. 1, 20-52.
J. A. Green, Polynomial Representations of GLn: with an Appendix on Schensted Correspondence and Littelmann Paths, Lecture Notes in Mathematics, Vol. 830, Springer-Verlag, Berlin, 2006.
N. Harman, Stability and periodicity in the modular representation theory of symmetric groups, arXiv:1509.06414 (2015).
N. Harman, Deligne Categories and Representation Stability in Positive Characteristic, PhD thesis, Massachusetts Institute of Technology, 2017.
Sam, S.V., Snowden, A.: Proof of Stembridges conjecture on stability of Kronecker coefficients. J. Algebraic Combin. 43(1), 1–10 (2016)
J. R. Stembridge, Generalized stability of Kronecker coefficients, unpublished manuscript, 2014.
Santana, A.P., Yudin, I.: Characteristic-free resolutions of Weyl and Specht modules. Adv. Math. 229(4), 2578–2601 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
RYBA, C. A PERMUTATION MODULE DELIGNE CATEGORY AND STABLE PATTERNS OF KRONECKER COEFFICIENTS. Transformation Groups 27, 1069–1109 (2022). https://doi.org/10.1007/s00031-022-09737-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00031-022-09737-5