Abstract
We provide a combinatorial description of the monoidal category generated by the fundamental representation of the small quantum group of \( \mathfrak{sl} \)2 at a root of unity q of odd order. Our approach is diagrammatic, and it relies on an extension of the Temperley–Lieb category specialized at δ = −q − q−1.
Article PDF
References
Y. Arike, A Construction of symmetric linear functions on the restricted quantum group \( \overline{U} \)q(\( \mathfrak{sl} \)2), Osaka J. Math. 47 (2010), no. 2, 535–557.
H. Andersen, C. Stroppel, D. Tubbenhauer, Cellular structures using Uq-tilting modules, Pacific J. Math. 292 (2018), no. 1, 21–59.
M. De Renzi, N. Geer, B. Patureau-Mirand, Renormalized Hennings invariants and 2+1-TQFTs, Commun. Math. Phys. 362 (2018), no. 3, 855– 907.
M. De Renzi, A. Gainutdinov, N. Geer, B. Patureau-Mirand, I. Runkel, 3-dimensional TQFTs from nonsemisimple modular categories, arXiv: 1912.02063 (2019).
M. De Renzi, A. Gainutdinov, N. Geer, B. Patureau-Mirand, I. Runkel, Mapping class group representations from nonsemisimple TQFTs, arXiv: 2010.14852 (2020).
M. De Renzi, J. Murakami, Nonsemisimple 3-manifold invariants derived from the Kauffman bracket, arXiv:2007.10831 (2020).
B. Feigin, A. Gainutdinov, A. Semikhatov, I. Tipunin, Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center, Commun. Math. Phys. 265 (2006), no. 1, 47–93.
I. Frenkel, M. Khovanov, Canonical bases in tensor products and graphical calculus for Uq(\( \mathfrak{sl} \)2), Duke Math. J. 87 (1997), no. 3, 409–480.
A. Gainutdinov, H. Saleur, I. Tipunin, Lattice W-algebras and logarithmic CFTs, J. Phys. A 47 (2006), no. 49, 495401.
F. Goodman, H. Wenzl, The Temperley–Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), no. 2, 307–334.
E. Ibanez, Idempotents de Jones–Wenzl évaluables aux racines de l’unité et représentation modulaire sur le centre de Uq\( \mathfrak{sl} \)(2), Algèbres Quantiques [math.QA], Université de Montpellier (2015), Français, tel-01300189; arXiv:1604.03681 [math.QA].
V. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25.
C. Kassel, Quantum Groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
H. Kondo, Y. Saito, Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to \( \mathfrak{sl} \)2, J. Algebra 330 (2011), 103–129.
W. Lickorish, An Introduction to Knot Theory, Graduate Texts in Mathematics, Vol. 175, Springer-Verlag, New York, 1997.
G. Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 1, 257– 296.
V. Lyubashenko, Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172 (1995), no. 3, 467–516.
S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995.
P. Martin, D. McAnally, On commutants, dual pairs and nonsemisimple algebras from statistical mechanics, Internat. J. Modern Phys. A 7 (1992), Suppl. 1B, 675–705.
S. Moore, Nonsemisimple planar algebras from the representation theory of \( \overline{U} \)q(\( \mathfrak{sl} \)2), Rev. Math. Phys. 30 (2018), no. 9, 1850017.
S. Moore, Diagrammatic morphisms between indecomposable modules of \( \overline{U} \)q(\( \mathfrak{sl} \)2), Internat. J. Math. 31 (2020), no. 02, 2050016.
M. Rosso, Quantum groups at a root of 1 and tangle invariants, Internat. J. Modern Phys. B 7 (1993), no. 20-21, 3715–3726.
R. Suter, Modules over \( \mathfrak{U} \)q(\( \mathfrak{sl} \)2), Comm. Math. Phys. 163 (1994), no. 2, 359–393.
H. Temperley, E. Lieb, Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280.
H. Wenzl, On sequences of projections, C. R. Math. Acad. Sci. Soc. R. Can. 9 (1987), no. 1, 5–9.
Author information
Authors and Affiliations
Corresponding author
Additional information
Funding Information
Open Access funding provided by Universität Zürich.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
M. De Renzi Supported by JSPS Postdoctoral Fellowship for Research in Japan ID PE18705.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
BLANCHET, C., RENZI, M.D. & MURAKAMI, J. DIAGRAMMATIC CONSTRUCTION OF REPRESENTATIONS OF SMALL QUANTUM \( \mathfrak{sl} \)2. Transformation Groups 27, 751–795 (2022). https://doi.org/10.1007/s00031-021-09670-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00031-021-09670-z