Skip to main content
Log in

BRAID GROUP ACTIONS FROM CATEGORICAL SYMMETRIC HOWE DUALITY ON DEFORMED WEBSTER ALGEBRAS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We construct a 2-representation categorifying the symmetric Howe representation of 𝔤𝔩m using a deformation of an algebra introduced by Webster. As a consequence, we obtain a categorical braid group action taking values in a homotopy category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Beliakova, H. Kazuo, A.D. Lauda, B. Webster, Cyclicity for categorified quantum groups, J. Algebra 452 (2016), 118–132.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Brundan, On the definition of Kac–Moody 2-category, Math. Ann. 364 (2016), no. 1-2, 353–372.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Berenstein, S. Zwicknagl, Braided symmetric and exterior algebras, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3429–3472.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Cautis, Clasp technology to knot homology via the afine Grassmannian, Math. Ann. 363 (2015), no. 3-4, 1053–1115.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Cautis, Remarks on coloured triply graded link invariants, Algebr. Geom. Topol. 17 (2017), no. 6, 3811–3836.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Chun, S. Gukov, D. Roggenkamp, Junctions of surface operators and categorification of quantum groups, in: Categorification in Geometry, Topo-logy, and Physics, Contemp. Math., Vol. 684, Amer. Math. Soc., Providence, RI, 2017, pp. 87–146.

  7. S. Cautis, J. Kamnitzer, Knot homology via derived categories of coherent sheaves, II: The 𝔰(m)-case, Inventiones Math. 174 (2008), no. 1, 165–232.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Cautis, J. Kamnitzer, Braiding via geometric Lie algebra actions, Compos. Math. 148 (2012), no. 2, 464–506.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Cooper, V. Krushkal, Categorification of the Jones–Wenzl projectors, Quantum Topol. 3 (2012), no. 2, 139–180.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Cautis, J. Kamnitzer, Categorical geometric symmetric Howe duality, Selecta Math. (N.S.) 24 (2018), no. 2, 1593–1631.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Cautis, J. Kamnitzer, A. Licata, Categorical geometric skew Howe duality, Inventiones Math. 180 (2010), no. 1, 111–159.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Cautis, J. Kamnitzerl, S. Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014), no. 1-2, 351–390.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Cautis, A. D. Lauda, Implicit structure in 2-representations of quantum groups, Selecta Math. (N.S.) 21 (2015), no. 1, 201–244

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Chuang, R. Rouquier, Derived equivalences for symmetric groups and 𝔰𝔩2- categorification, Ann. of Math. (2) 167 (2008), no. 1, 245–298.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. J. Cheng, W. Wang, Dualities and Representations of Lie Superalgebras, Graduate Studies in Mathematics, Vol. 144, American Mathematical Society, Providence, RI, 2012.

    Book  Google Scholar 

  16. B. Elias, M. Khovanov, Diagrammatics for Soergel categories, Int. J. Math. Math. Sci. 2010 (2010), Art. ID 978635, 58 pp.

  17. B. Elias, D. Krasner, Rouquier complexes are functorial over braid cobordisms, Homology Homotopy Appl. 12 (2010), no. 2, 109–146.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Elias, Y. Qi, An approach to categorification of some small quantum groups II, Adv. Math. 288 (2016), 81–151.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Ehrig, C. Stroppel, Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality, Adv. Math. 331 (2018), 58–142.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Frenkel, C. Stroppel, J. Sussan, Categorifying fractional Euler characteristics, Jones–Wenzl projectors and 3j-symbols, Quantum Topol. 3 (2012), no. 2, 181–253.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Garoufalidis, A. D. Lauda, T. Q. Le, The colored HOMFLYPT function is q-holonomic, Duke Math. J. 167 (2018), no. 3, 397–447.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Grant, A generators and relations description of a representation category of Uq(𝔤𝔩(1j1)), Algebr. Geom. Topol. 16 (2016), no. 1, 509–539.

    Article  MathSciNet  Google Scholar 

  23. M. Hogancamp, A polynomial action on colored 𝔰𝔩2 link homology, Quantum Topol. 10 (2019), no. 1, 1–75.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. E. V. Rose H. Queffelec, A. Sartori, Annular evaluation and link homology, arXiv:1802.04131 (2018).

  25. M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665–741 (electronic).

  27. M. Khovanov, Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications 14 (2005), no. 1, 111–130.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Khovanov, Triply-graded link homology and Hochschild homology of Soer-gel bimodules, Int. J. Math. 18 (2007), no. 18, 869–885.

    Article  MATH  Google Scholar 

  29. M. Khovanov, Hopfological algebra and categorification at a root of unity: the first steps, J. Knot Theory Ramifications 25 (2016), no. 3, 1640006, 26 pp.

  30. S. J. Kang, M. Kashiwarai, Categorification of highest weight modules via Khovanov–Lauda–Rouquier algebras, Invent. Math. 190 (2012), no. 3, 699–742.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Khovanov, A. D. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309–347.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Khovanov, A. D. Lauda, A diagrammatic approach to categorification of quantum groups III, Quantum Topology 1 (2010), 1–92.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Khovanov, A. D. Lauda, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), 2685–2700.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Khovanov, A. D. Lauda, M. Mackaay, M. Stošić, Extended Graphical Calculus for Categorified Quantum sl(2), Memoirs of the AMS 219 (2012).

  35. M. Khovanov, Y. Qi, An approach to categorification of some small quantum groups, Quantum Topol. 6 (2015), no. 2, 185–311.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Khovanov, L. Rozansky, Matrix factorizations and link homology II, Geom. Topol. 12 (2008), 1387–1425.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Khovanov, J. Sussan, The Soergel category and the redotted Webster algebra, J. Pure Appl. Algebra 222 (2018), 1957–2000.

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Toledano Laredo, A Kohno–Drinfeld theorem for quantum Weyl groups, Duke Math. J. 112 (2002), no. 3, 421–451.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. D. Lauda, A categorification of quantum sl(2), Adv. Math. 225 (2008), 3327–3424.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. D. Lauda, Parameters in categorified quantum groups, Algebr. Represent. Theor. (2019), https://doi.org/https://doi.org/10.1007/s10468-019-09890-8.

  41. A. D. Lauda, H. Queffelec, D. E. V. Rose, Khovanov homology is a skew Howe 2-representation of categorified quantum 𝔰𝔩m, Algebr. Geom. Topol. 15 (2015), no. 5, 2517–2608.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Manivel, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, SMF/AMS Texts and Monographs, Vol. 6, American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  43. M. Mackaay, W. Pan, D. Tubbenhauer, The 𝔰𝔩3-web algebra, Math. Z. 277 (2014), no. 1-2, 401–479.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Mackaay, M. Stošić, P. Vaz, A diagrammatic categorification of the q-Schur algebra, Quantum Topol. 4 (2013), no. 1, 1–75.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Mackaay, B. Webster, Categorified skew Howe duality and comparison of knot homologies, Adv. Math. 330 (2018), 876–945.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Mackaay, Y. Yonezawa, 𝔰𝔩n-web categories and categorified skew howe duality, J. Pure Appl. Algebra 223 (2019), 2173–2229.

    Article  MathSciNet  MATH  Google Scholar 

  47. Y. Qi, Hopfological algebra, Compos. Math. 150 (2014), no. 1, 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Queffelec, D. E. V. Rose, The 𝔰𝔩n foam 2-category: a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, Adv. Math. 302 (2016), 1251–1339.

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Qi, J. Sussan, A categorification of the Burau representation at prime roots of unity, Selecta Math. (N.S.) 22 (2016), no. 3, 1157–1193.

  50. H. Queffelec, A. Sartori, Mixed quantum skew Howe duality and link invariants of type A, J. Pure Appl. Algebra 223 (2019), no. 7, 2733–2779.

    Article  MathSciNet  MATH  Google Scholar 

  51. R. Rouquier, Categorification of the braid groups, arXiv:0409593 (2004).

  52. R. Rouquier, 2-Kac–Moody algebras, arXiv:0812.5023 (2008).

  53. L. Rozansky, An infinite torus braid yields a categorified Jones–Wenzl projector, Fund. Math. 225 (2014), 305–326.

    Article  MathSciNet  MATH  Google Scholar 

  54. D. Rose, D. Tubbenhauer, Symmetric webs, Jones–Wenzl recursions, and q-Howe duality, Int. Math. Res. Not. IMRN (2016), no. 17, 5249–5290.

  55. D. E. V. Rose, P. Wedrich, Deformations of colored 𝔰𝔩N link homologies via foams, Geom. Topol. 20 (2016), no. 6, 3431–3517.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. H. Robert, E. Wagner, Symmetric Khovanov–Rozansky link homologies, J. l’École polytechnique–Mathématiques 7 (2020) , 573–651.

  57. D. Tubbenhauer, P. Vaz, P. Wedrich, Super q-Howe duality and web categories, Algebr. Geom. Topol. 17 (2017), no. 6, 3703–3749.

    Article  MathSciNet  MATH  Google Scholar 

  58. B. Webster, On graded presentations of Hecke algebras and their generalizations, Algebraic Combinatorics 3 (2020), no. 1, 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  59. B. Webster, Knot Invariants and Higher Representation Theory, Mem. Amer. Math. Soc. 250 (2017), no. 1191, v+141.

  60. P. Wedrich, Exponential growth of colored HOMFLY-PT homology, Adv. in Math. 353 (2019), no. 7, 471–525.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. SUSSAN.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KHOVANOV, M., LAUDA, A.D., SUSSAN, J. et al. BRAID GROUP ACTIONS FROM CATEGORICAL SYMMETRIC HOWE DUALITY ON DEFORMED WEBSTER ALGEBRAS. Transformation Groups 27, 919–982 (2022). https://doi.org/10.1007/s00031-021-09669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-021-09669-6

Navigation