Skip to main content
Log in

DIFFERENTIAL GRADED LIE GROUPS AND THEIR DIFFERENTIAL GRADED LIE ALGEBRAS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

In this paper we discuss the question of integrating differential graded Lie algebras (DGLA) to differential graded Lie groups (DGLG). We first recall the classical problem of integration in the context, and recollect the known results. Then, we define the category of differential graded Lie groups and study its properties. We show how to associate a differential graded Lie algebra to every differential graded Lie group and vice versa. For the DGLA → DGLG direction, the main “tools” are graded Hopf algebras and Harish-Chandra pairs (HCP)—we define the category of graded and differential graded HCPs and explain how those are related to the desired construction. We describe some near-at-hand examples and mention possible generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki, Éléments de mathématique. Algébre. Chap. 1 à 3, Hermann, Paris, 1970.

  2. G. Bonavolontà, N. Poncin, On the category of Lie n-algebroids, J. Geom. and Phys. 73 (2013), 70–90.

    Article  MathSciNet  Google Scholar 

  3. C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry, EMS Series of Lectures in Mathematics, EMS, Zürich, 2011.

    Book  Google Scholar 

  4. A. S. Cattaneo, G. Felder, Poisson sigma models and symplectic groupoids, in: Quantization of Singular Symplectic Quotients, Progr. Math., Vol. 198, Birkhäuser, Basel, 2001, pp. 61–93.

  5. M. Crainic, R. L. Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), no. 2, 575–620.

  6. S. Covez, The local integration of Leibniz algebras, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 1, pp. 1–35.

    Article  MathSciNet  Google Scholar 

  7. W. van Est,, Group cohomology and Lie algebra cohomology in Lie groups, I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 56=Indagationes Math. 15 (1953), 484–492, 493–504.

  8. W. T. van Est, Th. J. Korthagen, Non-enlargible Lie algebras, Nederl. Akad. Wetensch. Proc. Ser. A 67=Indag. Math. 26 (1964), 15–31.

  9. Y. Félix, S. Halperin, J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics, Vol. 205, Springer-Verlag, New York, 2001.

    Book  Google Scholar 

  10. E. Getzler, Lie theory for nilpotent L-algebras, Ann. of Math. (2) 170 (2009), no. 1, 271–301.

  11. A. Henriques, Integrating L-algebras, Compos. Math. 144 (2008), no. 4, 1017–1045.

    Article  MathSciNet  Google Scholar 

  12. B. Jubin, A. Kotov, N. Poncin, V. Salnikov, On the structure of differential and graded Lie groups/algebra —Van Est isomorphism and Poincaré–Birkhoff–Witt theorem revisited, in preparation, 2021, some parts available at https://arxiv.org/abs/1906.09630.

  13. C. Kassel, Quantum Groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.

    Google Scholar 

  14. B. Kostant, Graded manifolds, graded Lie theory, and prequantization, in: Differential Geometrical Methods in Mathematical Physics, Proc. Sympos., Univ. Bonn, Bonn, 1975, Lecture Notes in Math., Vol. 570, Springer, Berlin, 1977, pp. 177–306.

  15. J.-L. Koszul, Graded manifolds and graded Lie algebras, in: Proceedings of the International Meeting on Geometry and Physics, Florence, 1982, Pitagora, Bologna, 1983, pp. 71–84.

    Google Scholar 

  16. D. Khudaverdyan, N. Poncin, J. Qiu, On the infinity category of homotopy Leibniz algebras, Theory Appl. Categ. 29 (2014), no. 12, 332–370.

    MathSciNet  MATH  Google Scholar 

  17. A. Kotov et al., DG Lie groups and characteristic classes, in preparation, 2021.

  18. A. Kotov, Superconnections and characteristic classes, in: XI Current Geometry, Vietri sul Mare (Salerno), Italy, 2010.

  19. A. Kotov, T. Strobl, Characteristic classes associated to Q-bundles, Int. J. Geom. Methods Mod. Phys. 12 (2015), no. 1, 1550006, 26 pp.

  20. A. Kotov, V. Salnikov, On the category of graded manifolds, in preparation, 2021.

  21. Y. Kosmann-Schwarzbach, Grand crochet, crochets de Schouten et cohomologies d’algèbres de Lie, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 1, 123–126.

    MathSciNet  MATH  Google Scholar 

  22. A. Kotov, V. Salnikov, T. Strobl, 2d gauge theories and generalized geometry, J. High Energy Phys. 2014 (2014), no. 8, 21 pp.

  23. V. Salnikov, Graded geometry in gauge theories and beyond, J. Geom. Phys. 87 (2015), 422–431.

    Article  MathSciNet  Google Scholar 

  24. P. Ševera, Some title containing the words “homotopy” and “symplectic”, e.g., this one, Trav. Math., Univ. Luxemb., Luxembourg 16 (2005), 121–137.

  25. I. R. Shafarevich, Basic Algebraic Geometry. 1, 3rd ed. Springer, Heidelberg, 2013.

  26. V. Salnikov, T. Strobl, Dirac sigma models from gauging, J. High Energy Phys. 2013 (2013), no. 110.

  27. Y. Sheng, C. Zhu, Integration of Lie 2-algebras and their morphisms, Lett. Math. Phys. 102 (2012), no. 2, 223–244.

    Article  MathSciNet  Google Scholar 

  28. H.-H. Tseng, C. Zhu, Integrating Lie algebroids via stacks, Compos. Math. 142 (2006), no. 1, 251–270.

    Article  MathSciNet  Google Scholar 

  29. E. G. Vishnyakova, On complex Lie supergroups and split homogeneous supermani-folds, Transform. Groups 16 (2011) no. 1, 265–285.

    Article  MathSciNet  Google Scholar 

  30. A. D. Weinstein, Integrating the nonintegrable, Feuilletages et quantitication géométrique: textes des journeées d’étude des 16 et 17 octobre 2003, Documents detravail (Equipe F2DS), (2004).

  31. A. Weinstein, P. Xu, Extensions of symplectic groupoids and quantization, J. Reine Angew. Math. 417 (1991), 159–189.

    MathSciNet  MATH  Google Scholar 

  32. C. Wockel, C. Zhu, Integrating central extensions of Lie algebras via Lie 2-groups, J. Eur. Math. Soc. 18 (2016), no. 6, 1273–1320.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VLADIMIR SALNIKOV.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JUBIN, B., KOTOV, A., PONCIN, N. et al. DIFFERENTIAL GRADED LIE GROUPS AND THEIR DIFFERENTIAL GRADED LIE ALGEBRAS. Transformation Groups 27, 497–523 (2022). https://doi.org/10.1007/s00031-021-09666-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-021-09666-9

Navigation